DOI QR코드

DOI QR Code

위도가 다른 재배지역에서 생육한 검정콩의 안토시아닌 및 이소플라본 함량 변이

Variation of Anthocyanin, and Isoflavone Contents in Korean Black Soybeans Grown at Different Latitudinal Locations

  • 홍승범 (강원대학교 생약자원개발학과) ;
  • 이수진 (강원대학교 생약자원개발학과) ;
  • 김영학 (강원대학교 생약자원개발학과) ;
  • 황영선 (강원대학교 생약자원개발학과) ;
  • 윤광희 (강원대학교 생약자원개발학과) ;
  • 이성인 (강원대학교 생약자원개발학과) ;
  • 남미영 (강원대학교 생약자원개발학과) ;
  • 송이슬 (강원대학교 생약자원개발학과) ;
  • 정명근 (강원대학교 생약자원개발학과)
  • Hong, Seung-Beom (Department of Herbal Medicine Resource, Kangwon National University) ;
  • Lee, Su-Jin (Department of Herbal Medicine Resource, Kangwon National University) ;
  • Kim, Young-Hak (Department of Herbal Medicine Resource, Kangwon National University) ;
  • Hwang, Young-Sun (Department of Herbal Medicine Resource, Kangwon National University) ;
  • Yoon, Kwang-Hee (Department of Herbal Medicine Resource, Kangwon National University) ;
  • Lee, Sung-In (Department of Herbal Medicine Resource, Kangwon National University) ;
  • Nam, Mi-Young (Department of Herbal Medicine Resource, Kangwon National University) ;
  • Song, Lee-Seul (Department of Herbal Medicine Resource, Kangwon National University) ;
  • Choung, Myoung-Gun (Department of Herbal Medicine Resource, Kangwon National University)
  • 투고 : 2010.06.10
  • 심사 : 2010.06.23
  • 발행 : 2010.06.30

초록

국내 육성 검정콩을 대상으로 고위도의 수원 ($37^{\circ}$16'N)과 저위도의 밀양 ($35^{\circ}C$30'N)에서 단순 재배지역 차이의 관점이 아니라, 작물의 생육환경에 영향을 줄 수 있는 위도 차이의 관점에서 검정콩 함유 안토시아닌 및 이소플라본의 함량 변이를 검토한 결과 안토시아닌 중 D3G 함량은 검정콩 3호 및 일품검정콩이, C3G 함량은 밀양 113호가, Pt3G 함량은 밀양 113호 및 일품검정콩이, 총 안토시아닌 함량은 밀양 113 호가 가장 높았다. 재배지 위도차이에 따른 안토시아닌 함량변이에서는 검정콩 3호는 D3G, C3G, 및 총 안토시아닌 함량이, 일품검정콩은 C3G 및 총 안토시아닌 함량이 고위도에서 저위도보다 높은 양상을 나타내었다. 이소플라본 함량은 검정콩 4호가 가장 높았고, 재배지 위도차이에 따른 이소플라본 함량 중 daidzein은 검정콩 3호, 밀양 112, 및 밀양 113호가 고위도에서 저위도보다 높았으며, glycitein은 검정콩 3호, 4호가 고위도에서, 밀양 113호는 저위도에서 높았다. Genistein은 공시된 검정콩 중 밀양 113호를 제외한 대부분 품종 및 계통이, 총 이소플라본 함량은 검정콩 4호와 청자콩이 저위도에서 고위도보다 높았다. 그리고 Pt3G를 제외한 안토시아닌 및 이소플라본 함량은 위도에 따른 재배지역과 품종 및 계통 간 상호작용이 있어 품종 및 계통에 따라 위도별 재배환경이 영향을 미치는 것으로 판단된다.

This experiment was conducted to investigate the variation of anthocyanin, and isoflavone contents in five cultivars and two lines of Korean domestic black soybeans grown at different latitudinal locations, a high latitude, Suwon ($37^{\circ}$16'N) and a low latitude, Milyang ($35^{\circ}$30'N). Delphinidin-3-glucoside (D3G) contents of anthocyanin in Geomjeongkong # 3 and Ilpumgeomjeongkong, cyanidin-3-glucoside (C3G) content in Milyang # 113, petunidin-3-glucoside (Pt3G) contents in Milyang # 113, and Ilpumgeomjeongkong, and total anthocyanins in Milyang # 113 were highest among the seven black soybean cultivars and lines. D3G, C3G, and total anthocyanins in Geomjeongkong # 3, C3G, and total anthocyanins in Ilpumgeomjeongkong grown at high latitude were higher compared to low latitude. Daidzein, glycitein, genistein, and total isoflavone contents in Geomjeongkong # 4 were highest among the seven cultivars and lines. Daidzein contents of isoflavone in Geomjeongkong # 3, Milyang # 112, and Milyang # 113 grown at high latitude were higher compared to low latitude. Glycitein contents in Geomjeongkong # 3, and # 4 grown at high latitude were higher compared to low latitude, while it in Milyang # 113 grown at low latitude was higher compared to high latitude. Genistein contents in most black soybeans except Milyang # 113, and total isoflavone contents in Geomjeongkong # 4 and Cheongjakong grown at low latitude were higher compared to high latitude. The variations of anthocyanin except Pt3G and isoflavone contents seemed to be affected by environmental conditions like different latitude than the genotype because they showed the significant interaction between cultivars and locations.

키워드

참고문헌

  1. Choung, M. G., Baek, I. Y., Kang, S. T., Han, W. Y., Shin, D. C., Moon, H. P., Kang, K. H., 2001. Isolation and determination of anthocyanins in seed coats of black soybean(Glycine max(L) Merr.), J Agic. Food. Chem. 49, 5848-5851. https://doi.org/10.1021/jf010550w
  2. Choung M. G., Hwang, Y. S., Lee, H. J., Choi, S. S., Lim, J. D., Kang, S. T., Han, W. Y., Baek, I. Y., Kim, H. K., 2008. Optimal extraction condition of anthocyanins in soybean (Glycine max) with black seed coats, Korean J. Crop Sci. 53(1), 110-117.
  3. Choung, M. G., Kang, S. T., Han, W. Y., Baek, I. Y., Kim, H. K., Shin, D. C., Kang, N. S., Hwang, Y. S., An, Y. N., Lim, J. D., Kim, K. S., Park, S. H., Kim, S. L., 2006. Variation of isoflavone contents in Korean soybean germplasm, Korean J. Crop Sci. 51(S), 146-151.
  4. Coward, L., Barnes, N. C., Setchell, K. D. R., Barnes, S., 1993. Genistein, daidzein, and their ${\beta}$-glucoside conjugates : Antitumor isoflavones in soybean foods from American and Asian diets, J. Agric. Food Chem. 41, 1961-1967. https://doi.org/10.1021/jf00035a027
  5. Han, W. Y., Park, K. Y., Choung, M. G., Kim, H. T., Ko, J. M., Baek, I. Y., Lee, C. Y., 2008. Growth characteristics and qualities of Korean soybean landraces, Korean J. Crop Sci. 53(S), 89-95.
  6. Joo, Y. H., Park, J. H., Choung, M. G., Yun, S. G., Chung, K. W., 2004A. Variation of contents and color difference of anthocyanin by different cultivation year in black soybean seed, Korean J. Crop Sci. 49(6), 507-511.
  7. Joo, Y. H., Park, J. H., Kim, Y. H., Choung, M. G., Chung, K. W., 2004B. Change in anthocyanin contents by cultivation and harvest time in black-seeded soybean, Korean J. Crop Sci. 49(6), 512-515.
  8. Kim, S. R., Kim, S. D., 1996. Studies on soybean isoflavones. I. Content and distribution of isoflavones in Korean soybean cultivars, J. Agri. Sci. 38, 155-165.
  9. Kim, S. Y., Ko, K. O., Lee, Y. S., Kim, H. S., Kim, Y. H., 2008A. Extraction efficiency and stability of antohocyanin pigments in black soybean seed coat, Korean J. Crop Sci. 53(S), 84-88.
  10. Kim, Y. H., 2002. Current achievement and perspectives of seed quality evaluation in soybean, Korean J. Crop Sci. 47(S), 95-106.
  11. Kim, Y. H., Kim, D. S., Woo, S. S., Kim, H. H., Lee. Y. S., Kim, H. S., Ko, K. O., Lee, S. K., 2008B. Antioxidant activity and cytotoxicity on human cancer cells of anthocyanin extracted from black soybean, Korean J. Crop Sci. 53(4), 407-412.
  12. Kitamura, K., Ijita, K., Kikuchi, A., Kudou, S., Okubo. K., 1991. Low isoflavone content in some early maturing cultivars, so-called "summer-type soybeans" (Glycine max(L) Merrill), Japan J. Breed. 41, 651-654. https://doi.org/10.1270/jsbbs1951.41.651
  13. Lee, M. J., Park, J. C., Oh, Y. J., Kim, K. H., Kim, H. S., Lee, S. B., Kim, J. C., 2006. Effect of nitrogen fertilization levels on growth and isoflavone content in soybean, Korean J. Crop Sci. 51(5), 445-450.
  14. Ok, H. C., Yoon, Y. H., Jeong, J. C., Hur, O. S., Lee, C. W., Kim, C. G., Cho, H. M., 2008. Yield and isoflavone contents of soybean cultivar in highland area, Korean J. Crop Sci. 53(1), 102-109.
  15. Shin, S. O., Shin, S. H., Ha, T. J., Lim, S. G., Choi, K. J., Baek, I. Y., Lee, S. C., Park, K. Y., 2009. Soybean ecological response and seed quality according to altitude and seeding dates, Korean J. Crop Sci. 54(2), 143-158.
  16. Tsukamoto, C., Shimata, S., Igita, K., Kukdou, S., Kokubun, M., Okubo, K., Kitamura, K., 1995. Factors affecting isoflavone content in soybean seeds; Change in isoflavone, saponin, and composition of fatty acids at different temperature during seed development, J. of agricultural and food chemistry 43(5), 1184-1192. https://doi.org/10.1021/jf00053a012
  17. Yi, E. S., Yi, Y. S., Yoon, S. T., Lee, H. G., 2009. Variation in antioxidant componets of black soybean as affected by variety and cultivation region, Korean J. Crop Sci. 54(1), 80-87.
  18. Yi, M. A., Kwon, T. W., Kim, J. S., 1997. Changes in isoflavone contents during maturation of soybean seed, J. Food Sci. 2(3), 255-258. https://doi.org/10.1111/j.1365-2621.1937.tb16517.x
  19. Yun, H. T., Kim, W. H., Lee, Y. H., Suh, S. J., Kim. S. J., 2006. Isoflavone contents of soybean according to different planting dates, Korean J. Crop Sci. 51(S), 174-178.
  20. Yun, H. T., Seo, M. J., Kim, S. L., An, S. O., Kim, S. J., 2005. Variation of seed component contents in wild soybean (Glycine soja Sieb. & Zucc.), Korean J. Crop Sci. 50(S), 108-111.

피인용 문헌

  1. Effect of Thermal Treatments on Flavonoid Contents in Domestic Soybeans vol.34, pp.2, 2015, https://doi.org/10.5338/KJEA.2015.34.2.21
  2. Physico-Chemical Analysis and Antioxidant Activities of Korea Aronia melanocarpa vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1165
  3. Comparisons of the Physicochemical Characteristics of Korean Traditional Soy Sauce with Varying Soybean Seeding Periods and Regions of Production vol.24, pp.4, 2011, https://doi.org/10.9799/ksfan.2011.24.4.761
  4. Production of Soybean Meat using Korean Whole Soybean and it's Quality Characteristics and Antioxidant Activity vol.48, pp.5, 2014, https://doi.org/10.14397/jals.2014.48.5.139
  5. Establishment of rapid discrimination system of leguminous plants at metabolic level using FT-IR spectroscopy with multivariate analysis vol.39, pp.3, 2012, https://doi.org/10.5010/JPB.2012.39.3.121