DOI QR코드

DOI QR Code

Properties of Aluminum Doped Zinc Oxide Thin Film Prepared by Sol-gel Process

  • Yi, Sung-Hak (School of Advanced Materials Engineering, Kookmin University Seoul) ;
  • Kim, Jin-Yeol (School of Advanced Materials Engineering, Kookmin University Seoul) ;
  • Jung, Woo-Gwang (School of Advanced Materials Engineering, Kookmin University Seoul)
  • Received : 2010.06.02
  • Accepted : 2010.06.25
  • Published : 2010.07.27

Abstract

Transparent conducting aluminum-doped ZnO thin films were deposited using a sol-gel process. In this study, the important deposition parameters were investigated thoroughly to determine the appropriate procedures to grow large area thin films with low resistivity and high transparency at low cost for device applications. The doping concentration of aluminum was adjusted in a range from 1 to 4 mol% by controlling the precursor concentration. The annealing temperatures for the pre-heat treatment and post-heat treatment was $250^{\circ}C$ and 400-$600^{\circ}C$, respectively. The SEM images show that Al doped and undoped ZnO films were quite uniform and compact. The XRD pattern shows that the Al doped ZnO film has poorer crystallinity than the undoped films. The crystal quality of Al doped ZnO films was improved with an increase of the annealing temperature to $600^{\circ}C$. Although the structure of the aluminum doped ZnO films did not have a preferred orientation along the (002) plane, these films had high transmittance (> 87%) in the visible region. The absorption edge was observed at approximately 370 nm, and the absorption wavelength showed a blue-shift with increasing doping concentration. The ZnO films annealed at $500^{\circ}C$ showed the lowest resistivity at 1 mol% Al doping.

Keywords

References

  1. J. B. Baxter and E. S. Aydil, App. Phy. Lett., 86, 053114-1-3 (2005). https://doi.org/10.1063/1.1861510
  2. N. Saito, H. Haneda, T. Sekiguchi, N Ohashi, I. Sakaguchi and K. Koumoto, Adv. Mater., 6, 418 (2002).
  3. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu and H. Shen, J. Cryst. Growth, 225, 110 (2001). https://doi.org/10.1016/S0022-0248(01)00830-2
  4. J. Y. Lee, Y. S. Choi, J. H. Kim, M. O. Park and S. Im, Thin Solid Films, 403-404, 553 (2002). https://doi.org/10.1016/S0040-6090(01)01550-4
  5. G. G. Valle, P. Hammer, S. H. Pulcinell and C. V. Sanrilli, J. Eur. Ceram. Soc., 24, 1009 (2004). https://doi.org/10.1016/S0955-2219(03)00597-1
  6. T. J. Hsueh, C. L. Hsu, S. J. Chang, P. W. Guo, J. H. Hsieh and I. C. Chen, Scripta Materialia, 57, 53 (2007). https://doi.org/10.1016/j.scriptamat.2007.03.012
  7. S. J. Tark, M. G. Kang and D. Kim, Kor. J. Mat. Res., 16(7), 449, (2006) (in Korean). https://doi.org/10.3740/MRSK.2006.16.7.449
  8. G. Alvarez, J. J. Flores, J. O. Aguilar, O.Gomez-Daza, C. A. Estrada, M. T. S. Nair and P. K. Nail, Solar Energy, 78, 113 (2005). https://doi.org/10.1016/j.solener.2004.06.021
  9. A. E. Morales, M. H. Zaldivar, U. Pal, Optical Materials, 29, 100 (2006). https://doi.org/10.1016/j.optmat.2006.03.010
  10. H. Gomez, A. Maldonado and D. R. Acosta, Sol. Energ. Mater. Sol. Cell., 87, 107 (2005). https://doi.org/10.1016/j.solmat.2004.07.016
  11. J. H. Choi, H. Tabata and T. J. Kawai, J. Cryst. Growth, 226, 493 (2001). https://doi.org/10.1016/S0022-0248(01)01388-4
  12. A. El-Shaer, A. Che Mofor, A. Bakin, M. Kreye and A. Waag, Superlattice Microst., 38, 265 (2005). https://doi.org/10.1016/j.spmi.2005.08.025
  13. Y. J. Cho, A. Park and C. Lee, Kor. J. Mat. Res., 16(7), 445 (2006) (in Korean). https://doi.org/10.3740/MRSK.2006.16.7.445
  14. A. W. Ott and R. P. H. Chang, Mater. Chem. Phys., 58, 132 (1999). https://doi.org/10.1016/S0254-0584(98)00264-8
  15. R. Kaur, A. V. Singh and R. M. Mehra, J. Non-Cryst. Solids, 352, 2335 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.03.011
  16. Z. Q. Xu, H. Deng, Y. Li, H. Cheng, Mater. Sci. Semicond. Process., 9, 132 (2006). https://doi.org/10.1016/j.mssp.2006.01.082
  17. M. J. Alam and D. C. Cameron, J. Vac. Sci. Technol. A, 19, 1642 (2001). https://doi.org/10.1116/1.1340659
  18. B. E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg and C. G. Granqvist, Phys. Rev. B, 37, 10244 (1988).