DOI QR코드

DOI QR Code

Preparation and Characterization of Ceria Stabilized Tetragonal Zirconia Polycrystals(I) : Effect of CeO2 Contents on the Mechanical Properties of Ce-TZP

세리아 안정화 지르코니아의 제조 및 특성(I) : CeO2첨가량 변화에 따른 Ce-TZP의 기계적 특성

  • Jung, Seung-Hwa (Component Materials Research Institute, Cenotec Co., Ltd) ;
  • Kang, Jong-Bong (Department of Nano Science and Engineering Kyungnam University)
  • 정승화 ((주)쎄노텍 부설 부품소재 연구소) ;
  • 강종봉 (경남대학교 나노공학과)
  • Received : 2010.06.23
  • Accepted : 2010.07.15
  • Published : 2010.07.27

Abstract

The usual ceramic process of mixing and milling in state of oxides $ZrO_2$ and $CeO_2$ was adopted in this study in a wet process to manufacture Ce-TZP. $CeO_2$-$ZrO_2$ ceramics containing 8~20 mol% $CeO_2$ were made by heat treatment at $1250\sim1500^{\circ}C$ for 5hr. The maximum dispersion point of every slurry manufactured with a mixture of $ZrO_2$ and $CeO_2$ was neat at pH10. A stable slurry with average particle size of 90 nm can be manufactured when it is dispersed with the use of ammonia water and polycarboxylic acid ammonium. The sintered Ce-TZP ceramics manufactured with the addition of $CeO_2$ in a concentration of less than 10 mol% progressed to the fracture of the specimen due to the existence of a monoclinic phase of more than 30% at room temperature. More than 99% of the tetragonal phase was created for the sintered body with the addition of $CeO_2$ beyond 18 mol%, but the degradation of the mechanical properties on the entire specimen was brought about due to the $CeO_2$ existing in a percentage above 3%. Consequently, the optimal Ce-TZP level combined in the oxide state was identified to be 16 mol% of $CeO_2$ contents.

Keywords

References

  1. R. M. Mcmeeking and A. G. Evans, J. Am. Ceram. Soc., 65(5), 242 (1981).
  2. T. K. Gupta, J. H. Bechtold, R. C. Kuznickie, L. H. Cadoff and B. R. Rossing, J. Mater. Sci., 12, 2421 (1977). https://doi.org/10.1007/BF00553928
  3. R. M. Dikerson, M .V. Swain and A. H. Heuer, J. Am. Ceram. Soc., 70(4), 214 (1987). https://doi.org/10.1111/j.1151-2916.1987.tb04970.x
  4. D. B. Marshall and M. V Swain, J. Am. Ceram. Soc., 71(6), 399 (1988). https://doi.org/10.1111/j.1151-2916.1988.tb05885.x
  5. F. F. Lange, J. Mater. Sci., 17, 240 (1982). https://doi.org/10.1007/BF00809059
  6. F. F. Lange, J. Mater. Sci., 17, 225 (1982). https://doi.org/10.1007/BF00809057
  7. K. Tsukuma and M. Shimada, J. Mater. Sci., 20, 1178 (1985). https://doi.org/10.1007/BF01026311
  8. I. Nettleship and R. Stevens, Int. J. High Technology Ceramics, 8, 1 (1987).
  9. M. Ruehle, N. Claussen and A. H. Heuer, J. Am. Ceram. Soc., 69(3), 195 (1986). https://doi.org/10.1111/j.1151-2916.1986.tb07405.x
  10. E. Tani, M. Yoshimura and S. Somiya, J. Am. Ceram. Soc., 66(7), 506 (1983). https://doi.org/10.1111/j.1151-2916.1983.tb10591.x
  11. T. W. Coyle, W. W. Coblenz and B. A. Bender, J. Am. Ceram. Soc., 71(2), C-88 (1988).
  12. R. C Garvie and P. S. Nicholson, J. Am. Ceram. Soc., 67(6), 303 (1972).
  13. H. Toraya, M. Yoshimura and S. Somiya, J. Am. Ceram. Soc., 67(6), C-119 (1984).
  14. H. S. Shin and S. J. Kwon, Bulletin of the Korean Ceramic Society, 8(2), 166 (1993).
  15. E. Dow Whitney, J. Am. Ceram. Soc., 45(12), 612 (1962). https://doi.org/10.1111/j.1151-2916.1962.tb11072.x
  16. G. D. Moon, J. K. Lee, D. J. Kim and H. Kim, Kor. J. Mater. Res., 5(7), 829 (1995).
  17. R. C. Garvie, J. Phys. Chem., 69(4), 1238 (1965). https://doi.org/10.1021/j100888a024
  18. R. C. Garvie, J. Phys. Chem., 82(2), 218 (1978). https://doi.org/10.1021/j100491a016
  19. F. F. Lange, J. Mater. Sci., 17, 225 (1982). https://doi.org/10.1007/BF00809057
  20. M. J. Readey, C. L. McCallen, J. Am. Ceram. Soc., 78(10) 2768 (1995).

Cited by

  1. Enhancement of Surface Hardness of Zirconia Ceramics by Hydroxyapatite Powder Bed Sintering vol.24, pp.12, 2014, https://doi.org/10.3740/MRSK.2014.24.12.677