DOI QR코드

DOI QR Code

Effect of Annealing Temperature and Alloying Elements on the Mechanical Properties of Fe-Mn-C TWIP Steels

Fe-Mn-C계 TWIP강의 재질특성에 미치는 소둔온도와 첨가원소의 영향

  • Jung, Jong-Ku (School of Advanced Materials Eng. & RCAMD, Chonbuk Nat. Univ.) ;
  • Kim, Nam-Kyu (School of Advanced Materials Eng. & RCAMD, Chonbuk Nat. Univ.) ;
  • Yeon, Yeo-Sun (School of Advanced Materials Eng. & RCAMD, Chonbuk Nat. Univ.) ;
  • Kim, Hyun-Ho (School of Advanced Materials Eng. & RCAMD, Chonbuk Nat. Univ.) ;
  • Lee, Oh-Yeon (School of Advanced Materials Eng. & RCAMD, Chonbuk Nat. Univ.)
  • 정종구 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 김남규 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 윤여선 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 김현호 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 이오연 (전북대학교 신소재공학부 신소재개발연구센터)
  • Received : 2010.07.12
  • Accepted : 2010.07.26
  • Published : 2010.07.27

Abstract

Twinning-induced plasticity (TWIP) steels have attracted great attention due to their excellent mechanical properties of high tensile strength (over 800MPa) and high ductility (over 50%), which result from the high strain hardening due to the mechanical twin formation during plastic deformation. The purpose of this study is to investigate the effect of annealing temperature and alloying elements on the mechanical properties of Fe-18Mn-0.6C TWIP steel. In 1.5%Al TWIP steel with 0.123%Ti content, the average recrystallized grain size was reduced to 2.5 ${\mu}m$ by cold rolling and annealing at $800^{\circ}C$ for 5 min, because of the pinning effect of the fine TiC carbides on grain coarsening. The tensile strength was decreased and the ductility was improved with the increase of the annealing temperature. However, a reversion of hardness and yield strength happened between $750^{\circ}C$ and $800^{\circ}C$ due to TiC and $M_3C$ type precipitation. 0.56% Ni added TWIP steel exhibited relatively lower yield strength, because Ni precipitates were not formed during the annealing process. When this specimen was annealed at $800^{\circ}C$ for 5min, the tensile strength and elongation were revealed at 1096MPa and 61.8%, respectively.

Keywords

References

  1. A. S. Hamada, L. P. Karjalainen and M. C. Somani, Mater. Sci. Eng., A467, 114 (2007).
  2. A. S. Hamada, M. C. Somani and L. P. Karjalainen, ISIJ Int., 47, 907 (2007). https://doi.org/10.2355/isijinternational.47.907
  3. S. Vercammen, B. Blanpain, B. C. De Cooman and P. Wollants, Acta Mater., 52, 2005 (2004). https://doi.org/10.1016/j.actamat.2003.12.040
  4. D. Barbier, N. Gey, S. Allain, N. Bozzolo and M. Humbert, Mater. Sci. Eng., A500, 196 (2009).
  5. L. Chen, H. S. Kim, S. K. Kim and B. C. De Coorman, ISIJ Int., 47, 1804 (2007). https://doi.org/10.2355/isijinternational.47.1804
  6. O. Bouaziz and N. Guelton, Mater. Sci. Eng., A319, 246(2001).
  7. S. Allain, Ph. D. Thesis, Institute National Polytechnique de Lorraine, France (2002).
  8. L. P. Kibin and Y. Estrin, J. Phys. III, 929 (1991).
  9. L. J. Cuddy and W. C. Leslie, Acta Metall., 20, 1157 (1972). https://doi.org/10.1016/0001-6160(72)90164-2
  10. R. Ueji, N. Tsuchida, H. Fujii, D. Kondo and K. Kunishige, J. Japan Inst. Met., 71, 815 (2007). https://doi.org/10.2320/jinstmet.71.815
  11. R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura and K. Kunishige, Scripta Mater., 59, 963 (2008). https://doi.org/10.1016/j.scriptamat.2008.06.050
  12. A. Goldberg, O. A. Ruano and O. D. Sherby, Mater. Sci. Eng., A150, 187 (1992).
  13. S. G. Kang, Y. S. Jung, J. H. June and Y. K. Lee, Mater, Sci. Eng., A527, 745 (2010).
  14. I. Karaman, H. Sehitoglu, K. Gall, Y. I. Chumlyakov and H. J. Maier, Acta. Mater., 48, 1345 (2000). https://doi.org/10.1016/S1359-6454(99)00383-3
  15. Y. N. Dastur and W. C. Leslie, Metall. Trans., 12A, 749 (1981).
  16. J. K. Jung, O. Y. Lee, Y. K. Park, D. E. Kim and K. G. Jin, Kor. J. Mater. Res., 18, 394 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.7.394