Preparation of Silver/Polystyrene Nanocomposites by Radical Polymerization Using Silver Carbamate Complex

은 카바메이트 복합체를 이용한 라디칼 중합에 의한 은/폴리스티렌 나노복합체의 제조

  • Park, Heon-Su (Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University) ;
  • Park, Hyung-Seok (Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University) ;
  • Gong, Myoung-Seon (Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University)
  • 박헌수 (단국대학교 나노바이오 의과학과, WCU 나노바이오 의과학연구센터) ;
  • 박형석 (단국대학교 나노바이오 의과학과, WCU 나노바이오 의과학연구센터) ;
  • 공명선 (단국대학교 나노바이오 의과학과, WCU 나노바이오 의과학연구센터)
  • Received : 2009.11.08
  • Accepted : 2009.12.25
  • Published : 2010.03.25

Abstract

Ag/polystyrene(PS) nanocomposites were prepared by in situ reduction of silver 2-ethylhexylcarbamate (Ag-CB) complex and follwing radical polymerization only by heating at 110 $^{\circ}C$. In contrast to this conventional heating method, the microwave irradiation afforded well-dispersed silver nanoparticles(NPs) in styrene monomer without polymerization. The synthesis of Ag NPs proceeded uniformly throughout the reaction vessel only under microwave irradiation, completing the reaction simultaneously in the whole reaction solution. Successive polymerization of the monomer containing the resultant NPs has successfully produced a hybrid of the silver NPs dispersed in PS matrix. Ag/PS (0.1/100) nanocomposites were prepared successfully by melt-mixing process using Ag/PS(4.0/100) as a master-batch. UV-VIS spectroscopy, TEM, and X-ray diffraction techniques were used to investigate the process of formation of Ag/PS nanocomposites.

Ag/polystyrene(PS) 나노복합체를 110 $^{\circ}C$의 가열법에 의하여 silver 2-ethylhexylcarbamate(Ag-CB) 복합체의 환원과 동시에 라디칼 중합을 진행하여 제조하였다. 또한, 이러한 전통적인 가열법과는 대조적으로 마이크로파를 조사하여 스티렌 단량체의 중합이 진행됨이 없이 은 나노입자가 잘 분산된 콜로이드 스티렌 용액을 제조할 수 있었다. 이렇게 단지 마이크로파를 조사하여 은 나노입자를 제조하는 방법은 반응기 내의 전체 용액 속에서 균일하고 빠르게 진행되어 매우 입자가 작고 균일한 은 나노콜로이드 용액을 제조할 수 있었다. 또한, 연속적으로 얻어진 은 나노입자를 포함하는 단량체 용액을 라디칼 중합시킴으로써 PS 고분자 매트릭스에 은 나노입자가 잘 분산된 Ag/PS 나노복합체를 얻을 수 있었다. Ag/PS(0.1/100) 나노복합체는 Ag/PS(4.0/100)를 마스터배치로 사용하여 용융-혼합 방법에 의하여 성공적으로 제조할 수 있었으며 그러한 나노복합체를 UV-VIS spectroscopy, TEM, 그리고 XRD를 이용하여 확인하였다.

Keywords

References

  1. M. Okamoto, S. Morita, H. Taguchi, Y. H. Kim, T. Kotaka, and H. Tateyama. Polymer, 41, 3887 (2000). https://doi.org/10.1016/S0032-3861(99)00655-2
  2. J. Ramos, A. Millan, and F. Palacio, Polymer. 41, 8481 (2000).
  3. Z. K. Zhu, J. Yin, F. Cao, X. Y. Shang, and Q. H. Lu, Adv. Mater., 12, 1055 (2000). https://doi.org/10.1002/1521-4095(200007)12:14<1055::AID-ADMA1055>3.0.CO;2-#
  4. D. W. Hatchett, M. Josowicz, J. Janata, and D. R. Baer, Chem. Mater., 11, 2989 (1999). https://doi.org/10.1021/cm990365m
  5. T. K. Chen, Y. I. Tien, and K. H. Wei, Polymer, 41, 1345 (2000). https://doi.org/10.1016/S0032-3861(99)00280-3
  6. M. Mukherjee, A. Datta, and D. Chakravorty, Appl. Phys. Lett., 64, 1159 (1994). https://doi.org/10.1063/1.110838
  7. L. T. Chang and C.C. Yen, J. Appl. Polym. Sci., 55, 371 (1995). https://doi.org/10.1002/app.1995.070550219
  8. Q. L. Feng, F. Z. Cui, T. N. Kin, and J. W. Kin, J. Mater. Sci. Lett., 18, 559 (1999). https://doi.org/10.1023/A:1006686713882
  9. W. Fritzsche, H. Porwol, A. Wiegand, S. Bornmann, and J. M. Kohler, Nanostruct. Mater., 10, 89 (1998). https://doi.org/10.1016/S0965-9773(98)00023-3
  10. Y. Shiraishi and N. Toshima, Colloid Surf. A, 169, 59 (2000). https://doi.org/10.1016/S0927-7757(00)00417-9
  11. S. Chun, D. Grudinin, D. Lee, S. H. Kim, G. R. Yi, and I. Wgang, Chem. Mater., 21, 343 (2009). https://doi.org/10.1021/cm802475m
  12. S. Qi, Z. Wu, and R. Jin, J. Phys. Chem. B, 112, 5575 (2008). https://doi.org/10.1021/jp711373p
  13. Z. Zhang, L. Zhang, S. Wang, W. Chen, and Y. Lei, Polymer, 42, 8315 (2001). https://doi.org/10.1016/S0032-3861(01)00285-3
  14. Y. Wada, T. Kobayashi, H. Yamasaki, T. Sakata, N. Hasegawa, H. Mori, and Y. Tsukahara, Polymer, 48, 1441 (2007). https://doi.org/10.1016/j.polymer.2007.01.047
  15. Y. Gotoh, R. Igarashi, Y. Ohkoshi, M. Nagura, K. Akamatsu, and S. Deki, J. Mater. Chem., 10, 2548 (2000). https://doi.org/10.1039/b003899g
  16. H. G. Hong, C. K. Park, and M. S. Gong, Bull. Korean Chem. Soc., in Press.
  17. C. J. Huang, C. C. Yen, and T. C. Chang, J. Appl. Polym. Sci., 42, 2237 (1991). https://doi.org/10.1002/app.1991.070420814
  18. L. Lu, M. O. Lai, Y. H. Toh, and L. Froyen, Mater. Sci. Eng. A, 334A, 163 (2001).
  19. L. T. Chang and C. C. Yen, J. Appl. Polym. Sci., 55, 371 (1995). https://doi.org/10.1002/app.1995.070550219
  20. Y. J. Zhu, Y. T. Qian, X. J. Li, and M. W. Zhang, Nenostruct. Mater., 10, 673 (1998). https://doi.org/10.1016/S0965-9773(98)00096-8
  21. Y. J. Zhu, Y. T. Qian, M. W. Zhang, Z. Y. Chen, L. Bin, and C. S. Wang, Mater. Lett., 17, 314 (1993). https://doi.org/10.1016/0167-577X(93)90021-O
  22. M. S. Park, T. H. Lim, Y. M. Jeon, J. G. Kim, S. W. Joo, and M. S. Gong, Macromol. Res., 16, 308 (2008). https://doi.org/10.1007/BF03218522
  23. M. S. Park, T. H. Lim, Y. M. Jeon, J. G. Kim, S. W. Joo, and M. S. Gong, Sens. Actuators B, 133, 166 (2008). https://doi.org/10.1016/j.snb.2008.02.008
  24. M. S. Park, T. H. Lim, Y. M. Jeon, J. G. Kim, S. W. Joo, and M. S. Gong, J. Colloid Interf. Sci., 321, 60 (2008). https://doi.org/10.1016/j.jcis.2008.01.053
  25. T. H. Lim, Y. M. Jeon, and M. S. Gong, Polymer(Korea), 33, 33 (2009).
  26. Y. M. Jeon, H. N. Cho, and M. S. Gong, Macromol. Res., 17, 2 (2009). https://doi.org/10.1007/BF03218592
  27. H. K. Hong. C. K. Park, and M. S. Gong, Bull. Korean Chem. Soc., 30, 2669 (2009). https://doi.org/10.5012/bkcs.2009.30.11.2669