DOI QR코드

DOI QR Code

Photoluminescence and Fabrication of Zirconia Nanofibers from Electrospinning an Alkoxide Sol Templated on a Polyvinyl Butyral

폴리비닐 부티랄에 붙힌 지르코늄 알콕시드 졸을 사용한 전기방사에서 지르코니아 나노섬유 제조와 광발광

  • Ko, Tae-Gyung (Division of Materials Science and Engineering, Inha University) ;
  • Han, Kyu-Suk (Division of Materials Science and Engineering, Inha University) ;
  • Rim, Tae-Kyun (Division of Materials Science and Engineering, Inha University) ;
  • Oh, Seoung-Gyu (Division of Materials Science and Engineering, Inha University) ;
  • Han, Sang-Whan (Division of Materials Science and Engineering, Inha University)
  • 고태경 (인하대학교 신소재공학부) ;
  • 한규석 (인하대학교 신소재공학부) ;
  • 임태균 (인하대학교 신소재공학부) ;
  • 오성규 (인하대학교 신소재공학부) ;
  • 한상환 (인하대학교 신소재공학부)
  • Received : 2010.06.30
  • Accepted : 2010.07.19
  • Published : 2010.07.31

Abstract

A zirconia gel/polymer hybrid nanofiber was produced in a nonwoven fabric mode by electrospinning a sol derived from hydrolysis of zirconium butoxide with a polyvinyl butyral. Results indicated that the hydroxyl groups on the vinyl alcohol units in the backbone of the polymer were involved in the hydrolysis as well as grafting the hydrolyzed zirconium butoxide. In addition, use of acetic acid as a catalyst resulted in further hydrolysis and condensation in the sol, which led to the growth of -Zr-O-Zr- networks among the polymer chains. These networks gradually transformed into a crystalline zirconia structure upon heating. The as-spun fiber was smooth but partially wrinkled on the surface. The average fiber diameter was $690{\pm}110\;nm$. The fiber exhibited a strong but broad blue photoluminescence with its maximum intensity at a wavelength of ~410 nm at room temperature. When the fiber was heat-treated at $400^{\circ}C$, the fiber diameter shrunk to $250{\pm}60\;nm$. Nanocrystals which belonged to a tetragonal zirconia phase and were ~5 nm in size appeared. A strong white photoluminescence was observed in this fiber. This suggests that oxygen or carbon defects associated with the formation of the nanocrystals play a role in generating the photoluminescence. Further heating to $800^{\circ}C$ resulted in a monoclinic phase beginning to form In the heat-treated fibers, coloring occurred but varied depending on the heating temperature. Crystallization, coloring, and phase transition to the monoclinic structure influenced the photoluminescence. At $600^{\circ}C$, the fiber appeared to be fully crystallized to a tetragonal zirconia phase.

Keywords

References

  1. C. Shao, H. Guan, Y. Liu, J. Gong, N. Yu, and X. Yang, “A Novel Method for Making $ZrO_2$ Nanofibres via an Electrospinning Technique,” J. Cryst. Growth, 267 380-84 (2004). https://doi.org/10.1016/j.jcrysgro.2004.03.065
  2. A. Azad, “Fabrication of Yttria-Stabilized Zirconia Nanofibers by Electrospinning,” Mater. Lett., 60 62-72 (2006).
  3. H. B. Zhang and M. J. Edirisinghe, “Electrospinning Zirconia Fiber From a Suspension,” J. Am. Ceram. Soc., 89 [6] 1870-75 (2006). https://doi.org/10.1111/j.1551-2916.2006.01038.x
  4. N. Dharmaraj, C. H. Kim, and H. Y. Kim, “Synthesis and Characterisation of Zirconium Oxide Nanofibers by Electrospinning,” Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 36 29-32 (2006). https://doi.org/10.1080/15533170500471391
  5. L. Li, P. Zhang, J. Liang, and S. M. Guo, “Phase Transformation and Morphological Evolution of Electrospun Zirconia Nanofibers During Thermal Annealing,” Ceram. Int., 36 589-94 (2010). https://doi.org/10.1016/j.ceramint.2009.09.030
  6. J. G. Lu, P. Chang, and Z. Fan, “Quasi-One-Dimensional Metal Oxide Materials-Synthesis, Properties and Applications,” Mater. Sci. and Eng. R, 52 49-91 (2006). https://doi.org/10.1016/j.mser.2006.04.002
  7. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater., 15 [5] 353-89 (2003). https://doi.org/10.1002/adma.200390087
  8. W. Sigmund, H. Yuh, H. Park, V. Maneeratana, G. Pyrgiotakis, A. Daga, J. Taylor, and J. C. Nino, “Processing and Structure Relationships in Electrospinning of Ceramic Fiber Systems,” J. Am. Ceram. Soc., 89 [2] 395-407 (2006). https://doi.org/10.1111/j.1551-2916.2005.00807.x
  9. R. H. J. Hannink, P. M. Kelly, and B. C. Muddle, “Transformation Toughening in Zirconia-Containing Ceramics,” J. Am. Ceram. Soc., 83 [3] 461-87 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01221.x
  10. K. Sayama and H. Arakawa, “Effect of Carbonate Addition on the Photocatalytic Decomposition of Liquid Water over a $ZrO_2$ Catalyst,” J. Photochem. Photobiol. A:Chem., 94 67-76 (1996). https://doi.org/10.1016/1010-6030(95)04204-0
  11. M. Benammar, “Techniques for Measurement of Oxygen and Air-to-Fuel Ratio Using Zirconia Sensors. A review,” Meas. Sci. Technol., 5 757-67 (1994). https://doi.org/10.1088/0957-0233/5/7/001
  12. B. Zhu, “Solid Oxide Fuel Cell(SOFC) Technical Challenges and Solutions from Nano-Aspects,” Int. J. Energy Res., 33 1126-37 (2009). https://doi.org/10.1002/er.1600
  13. J. Li, X. Jiao, and D. Chen, “Preparation of Zirconia Fibers via a Simple Aqueous Sol-Gel Method,” J. Disp. Sci. Tech., 28 531-35 (2007). https://doi.org/10.1080/01932690701277120
  14. H. Cao, X. Qiu, B. Luo, Y. Liang, Y. Zhang, R. Tan, M. Zhao, and Q. Zhu, “Synthesis and Room-Temperature Ultraviolet Photoluminescence Properties of Zirconia Nanowires,” Adv. Funct. Mater., 14 [3] 243-46 (2004). https://doi.org/10.1002/adfm.200305033
  15. J. L. Gole, S. M. Prokes, J. D. Stout, O. J. Glembocki, and R. Yang, “Unique Properties of Selectively Formed Zirconia Nanostructures,” Adv. Mater., 18 664-67 (2006). https://doi.org/10.1002/adma.200500769
  16. G. Yu, L. Zhu, X. Wang, H. Che, G. Zhang, Z. Sun, H. Fan, X. Liu, and D. Xu, “Fabrication of Zirconia Mesoporous Fibers by Using Polyorganozirconium Compound as Precursor,” Microporous and Mesoporous Mater., 119 230-36 (2009). https://doi.org/10.1016/j.micromeso.2008.10.029
  17. A. Emeline, G. V. Kataeva, A. S. Litke, A. V. Rudakova, V. K. Ryabchuk, and N. Serpone, “Spectroscopic and Photoluminescence Studies of a Wide Band Gap Insulating Material: Powdered and Colloidal $ZrO_2$ Sols,” Langmuir, 14 5011-22 (1998). https://doi.org/10.1021/la980083l
  18. C. Lin, C. Zhang, and J. Lin, “Phase Transformation and Photoluminescence Properties of Nanocrystalline $ZrO_2$ Powders Prepared via the Pechini-type Sol-Gel Process,” J. Phys. Chem. C, 111 3300-7 (2007). https://doi.org/10.1021/jp066615l
  19. C. Zhang, C. Li, J. Yang, Z. Cheng, Z. Hou, Y. Fan, and J. Lin, “Tunable Luminescence in Monodisperse Zirconia Sphere,” Langmuir, 25 [12] 7078-83 (2009). https://doi.org/10.1021/la900146y
  20. Y. Cong, B. Li, B. Lei, and W. Li, “Long Lasting Phosphorescent Properties of Ti Doped $ZrO_2$,” J. Lumin., 126 822-26 (2007). https://doi.org/10.1016/j.jlumin.2006.12.002
  21. K. Han and T. Ko, “Variation of Photoluminescence in Zirconia Gel by Pyrolysis(in Korean),” J. Kor. Ceram. Soc., 45 [2] 126-31 (2008). https://doi.org/10.4191/KCERS.2008.45.2.126
  22. C. Sanchez, L. Rozes, F. Ribot, C. Laberty-Robert, D. Grosso, C. Sassoye, C. Boissiere, and L. Nicole, “Chimie douce : A Land of Opportunities for the Designed Construction of Functional Inorganic and Hybrid Organic-Inorganic Nanomaterials,” C. R. Chimie., 13 3-39 (2010). https://doi.org/10.1016/j.crci.2009.06.001
  23. A. C. Pierre, “Introduction to Sol-Gel Processing,” pp. 55-70, Kluwer Academic Publishers, Nowell, Massachusetts, 1998.
  24. A. K. Dhaliwal and J. N. Hay, “The Characterization of Polyvinyl Butyral by Thermal Analysis,” Thermochimica Acta, 391 245-55 (2002). https://doi.org/10.1016/S0040-6031(02)00187-9
  25. Y. Zhang, Y. Ding, J. Gao, and J. Yang, “Mullite Fibres Prepared by Sol-Gel Method Using Polyvinyl Butyral,” J. Euro. Ceram. Soc., 29 1101-7 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.08.008
  26. L. A. Salam, R. D. Matthews, and H. Robertson, “Pyrolysis of Polyvinyl Butyral(PVB) Binder in Thermoelectric Green Tapes,” J. Euro. Ceram. Soc., 20 1375-83 (2000). https://doi.org/10.1016/S0955-2219(99)00236-8
  27. M. J. Hyatt and N. P. Bansal, “Phase Transformations in Xerogels of Mullite Composition,” J. Mater. Sci., 25 2815-21 (1990). https://doi.org/10.1007/BF00584886
  28. D. Bhatia, M. Alam, and P.C. Sarkar, “Studies on Thermal Stress of Lac-Polyvinyl Butyral Resin Blends through Specular Reflectance Spectra,” Pigment & Resin Tech., 36 [6] 350-62 (2007). https://doi.org/10.1108/03699420710831773
  29. H. Hayashi, H. Suzuki, and S. Kaneko, “Effect of Chemical Modification on Hydrolysis and Condensation Reaction of Zirconium Alkoxide,” J. Sol-Gel Sci. Tech., 12 87-94 (1998). https://doi.org/10.1023/A:1008661227954
  30. G. Socrates, “Infrared Characteristic Group Frequencies,” pp. 1-89, John Wiley & Sons, Hoboken, New Jersey, 1980.
  31. S. Doeuff, M. Henry, C. Sanchez, and J. Livage, “Hydrolysis of Titanium Alkoxides: Modification of the Molecular Precursor by Acetic Acid,” J. Non-Cryst. Solids, 89 206-16 (1987). https://doi.org/10.1016/S0022-3093(87)80333-2
  32. R. Sui, J. M. H. Lo, and P. A. Charpentier, “Infrared and Computational Studies on Interactions of Carbon Dioxide and Titania Nanoparticles with Acetate Groups,” J. Phys. Chem. C, 113 21022-28 (2009). https://doi.org/10.1021/jp904599t
  33. R. Liu, B. He, and X. Chen, “Degradation of Poly(vinyl butyral) and Its Stabilization by Bases,” Polymer Degradation and Stability, 93 846-53 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.01.008
  34. E. F. López, V. S. Escribano, M. Panizza, M. M. Carnasciali, and G. Busca, “Vibrational and Electronic Spectroscopic Properties of Zirconia Powders,” J. Mater. Chem., 11 1891-97 (2001). https://doi.org/10.1039/b100909p
  35. G. Ramis, G. Busca, and V. Lorenzelli, “Low-Temperature $CO_2$ Adsorption on Metal Oxides: Spectroscopic Characterization of Some Weakly Adsorbed Species,” Mater. Chem. Phys., 29 425-35 (1991). https://doi.org/10.1016/0254-0584(91)90037-U
  36. K. Pokrovki, K. T. Jung, and A. T. Bell, “Investigation of CO and $CO_2$ Adsorption on Tetragonal and Monoclinic Zirconia,” Langmuir, 17 4297-303 (2001). https://doi.org/10.1021/la001723z
  37. M. D. Lu and S. M. Yang, “Synthesis of Poly(3-hexylthiophene) Grafted $TiO_2$ Nanotube Composite,” J. Colliod Interface Sci., 333 128-34 (2009). https://doi.org/10.1016/j.jcis.2009.01.073
  38. M. I. Osendi, J. S. Moya, C. J. Serna, and J. Soria, “Metastability of Tetragonal Zirconia Powders,” J. Am. Ceram. Soc., 68 [3] 135-39 (1985). https://doi.org/10.1111/j.1151-2916.1985.tb09651.x
  39. A. K. Deb, P. Chatterjee, and S. P. S. Gupta, “Structural Investigation of Tetragonally Stabilized $ZrO_2$ in ${\aplha}-Al_{2}O_{3}-ZrO_{2}$ Composites,” J. Appl. Cryst., 39 601-3 (2006). https://doi.org/10.1107/S0021889806021236

Cited by

  1. Preparation and Characterization of PAN Based Carbon Fibers Having Zirconia Nanofibers vol.49, pp.5, 2012, https://doi.org/10.12772/TSE.2012.49.5.307
  2. Membranes by Two-Step Anodizing vol.57, pp.5, 2013, https://doi.org/10.5012/jkcs.2013.57.5.547