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ON CHARACTERIZATIONS OF PRUFER
v-MULTIPLICATION DOMAINS

GYU WHAN CHANG

ABSTRACT. Let D be an integral domain with quotient field K,
Z(D) be the set of nonzero ideals of D, and w be the star-operation
on D defined by I, = {& € Kl|zJ C I for some J € Z(D) such
that J is finitely generated and J~! = D}. The D is called a Priifer
v-multiplication domain if (I1~1),, = D for all nonzero finitely gen-
erated ideals I of D. In this paper, we show that D is a Priifer
v-multiplication domain if and only if (AN (B + C)), = (AN
B)+ (ANCQ)), for all A, B,C € Z(D), if and only if (A(BNC)),, =
(ABNAQC),, for all A, B,C € (D), if and only if ((A+B)(ANDB)), =
(AB),, for all A,B € Z(D), if and only if (A+ B) : C)y = ((A:
C)+ (B:Q))y for all A,B,C € Z(D) with C finitely generated, if
and only if ((a : b) + (b : a)), = D for all nonzero a,b € D, if and
only if (A: (BNC))y =((A:B)+(A:C))y forall A,B,C € I(D)
with B, C' finitely generated.

1. Introduction

Let D be an integral domain with quotient field K. Let Z(D) be the
set of nonzero ideals of D and let F'(D) be the set of nonzero fractional
ideals of D; so Z(D) = {I € F(D)|I € D}. A map x: F(D) — F(D),
I — I, is called a star-operation on D if the following three conditions
are satisfied for all 0 # a € K and I, J € F(D);

(1) (aD). = aD and (al), = al.,,

(2) I C I, and if I C J, then I, C J,, and

(3) (Lo)s = L.
Given a star-operation x on D, we can construct two new star-operations
7 and *,, on D as follows; for each I € F(D), I, = U{J.|J C I and J
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is a nonzero finitely generated ideal of D} and I, = {x € K|zJ C I for
J a nonzero finitely generated ideal of D with J, = D}. An I € F(D)
is said to be #-invertible if (I77!), = D, where I™! = {x € K|zI C D}.
An I € F(D) is called a *-ideal if I, = I; so I, is a *-ideal, while a
x-ideal is a maximal *-ideal if it is maximal among proper integral -
ideals. Let x-Max (D) denote the set of all maximal *-ideals of D. It is
well known that *-Max(D) # 0 if D is not a field; *-Max(D) = #,,-
Max(D) [1, Theorem 2.1]; each maximal *-ideal is a prime ideal; and
D = Npes;-Max(D) Dp-

The v-operation is a star-operation defined by I, = (I')~!, the ¢-
operation is defined by ¢ = vy, and the w-operation is by w = wv,,.
The d-operation is just the identity map on F(D), i.e., I; = I for all
I € F(D);sod=ds=d,. Clearly, I; C 1, C I, C I, forall I € F(D).
An overring of D means a ring between D and K. We say that an
overring R of D is t-linked over D if I, = D implies (IR), = R for all
nonzero finitely generated ideals I of D.

We say that D is a valuation domain if either x € D or 2= € D for
all nonzero x € K. Hence if A = (ay,...,a,) is an ideal of a valuation
domain D, then {a;D} is linearly ordered under inclusion; so A = a;V/
for some i. Thus, each finitely generated ideal of a valuation domain
is principal. Also, if A, B are ideals of a valuation domain, then either
A C Bor BC A. The D is called a Priifer domain (resp., Priifer v-
multiplication domain (PvMD)) if each nonzero finitely generated ideal [
of D is invertible (resp., t-invertible), i.e., [I~! = D (resp., (II7'); = D).
Clearly, I € F(D) is t-invertible if and only if I7=! ¢ P for all maximal
t-ideals P of D. Hence t-Max(D) = w-Max(D) implies that [ is t-
invertible if and only if [ is w-invertible. Thus, D is a PuMD if and only
if each nonzero finitely generated ideal of D is w-invertible.

It is well known that D is a Prifer domain if and only if D), is a
valuation domain for all maximal ideals M of D, if and only if two
generated nonzero ideal of D is invertible, if and only if each overring
of D is integrally closed, if and only if each overring of D is a Priifer
domain (see, for example, [5, Sections 22 - 28]). The theory of PuMDs
runs along lines parallel to that of Priifer domains. For example, D is a
PvMD if and only if Dp is a valuation domain for all maximal t-ideals
P of D, if and only if two generated nonzero ideal of D is t-invertible, if
and only if each t-linked overring of D is integrally closed, if and only if
each t-linked overring of D is a PuMD (cf. [3, 4, 6, 9] and Lemma 4).
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Let X be an indeterminate over D. For each polynomial f € K[X],
the content of f, denoted by Ay, is the fractional ideal of D generated
by the coefficients of f. We know that D is a Priifer domain if and only
if AfA, = Ay, for all 0 # f,g € D[X] and that D is integrally closed
if and only if (AfA,): = (Agy) for all 0 # f,g € D[X]. Clearly, if D
is a PuMD, then (A;A,), = (Ayy), for all 0 # f,g € D[X], but since
an integrally closed domain need not be a PuMD, the converse does not
hold. In [3, Corollary 3.7], Chang proved that D is a PvMD if and only
if (AfAy)w = (Agg)w for all 0 # f,g € D[X].

The followings are other characterizations of Priifer domains, which
are due to Jensen 1963 [7]. (Note that (A : B) = {z € D|zB C A} for
ideals A and B of D.)

THEOREM 1. The following statements are equivalent for an integral
domain D.

(1) D is a Priifer domain.

(2) AN(B+C)=(ANB)+(ANC) for all A,B,C € Z(D).

(3) A(BNC)=ABNAC for all A,B,C € Z(D).

(4) (A+B)(ANB) =AB for all A,B € (D).

(5) (A+B):C=A:C+B:Cforall A,B,C € Z(D) with C finitely
generated.

(6) (a:b)+(b:a)=D forall0# a,be D.

(7) (A:(BNC))=(A:B)+(A:C) forall A, B,C € Z(D) with B,C
finitely generated.

The purpose of this paper is to give the PuMD analog of Theorem 1,
which also gives new characterizations of PvMDs.

2. Characterizations of PvMDs

Let D denote an integral domain with quotient field K. In this sec-
tion, we use the w-operation to characterize PuMDs. We first need some
lemmas (Lemmas 2-4), which are already well known, but we give their
proofs for the completeness of this paper.

LEMMA 2. [1, Corollary 2.13] Let I and J be nonzero ideals of D.

(1) I, = ﬁPG)&-M&X(D)IDP-

(2) I,Dp = IDp for all maximal t-ideals P of D.

(3) I, = Jy if and only if IDp = JDp for all maximal t-ideals P of
D.
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Proof. (1) (C) If x € I,, then there exists a nonzero finitely gen-
erated ideal A of D such that A= = D and A C I. Hence = €
xDp = ©ADp C IDp for all maximal t-ideals P of D. (D) For a €
Npetmax(n)IDp, let A = {b € Dlba € I}. Then aA C [ and A € P
for all P € t-Max(D). So A; = D, and hence there is a nonzero finitely
generated ideal B of D such that B C A and B~! = B, = D. Thus,
a € I, because aB C aA C I.

(2) and (3) These are immediate consequences of (1). O

LEMMA 3. [5, Theorems 4.3 and 4.4] Let S be a multiplicative subset
of D, and let A, B be nonzero ideals of D.

1) (A+ B)Ds = ADs + BDg.

2) (AB)Ds = (ADs)(BDs).

3) (AN B)Ds = ADg N BDs.

4) If I is an ideal of Dg, then I = (I N D)Dsg.

5) If B is finitely generated, then (A : B)Dg = (ADg : BDg).

Proof. ( ) and ( ) are clear. (3) Since AN B C ADg N BDg, we
have (AN B)Dg C (ADs N BDs)Ds = ADg N BDg. Conversely, if
x:%:%’ ADg N BDg, where a € A,b € B and s,t € 5, then
at =bs € AN B; hence z = % = % € (AN B)Ds.

(4) If z € I C Dg, then there is an s € S such that sz € I N D.
Hence x = 22 € (I N D)Dg. Conversely, since I N D C I, we have
(In D)DS CIDg=1I.

(5)Ifxz € (A: B), then B C A; hence tBDg C ADs. Sox € (ADg :
BDs) Hence (A B) (ADS BDs) and thus (A B)DS (ADS
BDg). Conversely, if y € (ADg : BDg), then yB C yBDg C ADg.
Note that, since B is finitely generated, there exists an s € S such that
syB C A. Hence sy € (A: B), and thus y € (A: B)Dg. O

LEMMA 4. [6, Theorem 5] The following statements are equivalent
for D.

(1) D is a PuMD.
(2) Each nonzero two generated ideal of D is t-invertible.
(3) Dp is a valuation domain for all maximal t-ideals P of D.

Proof. (1) = (2) Clear. (2) = (3) Let = § € K be nonzero, where
a,b € D, and let P be a maximal ¢-ideal of D. Since ((a,b)(a,b)™"), = D,
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we have (a, ) a,b)”' ¢ P. Hence

((a,b)(a,b)"")Dp = ((a,b)Dp)((a,0)"' Dp)
< ((a,b)Dp)((a,b)Dp) " € Dp,
(a,

and so ((a,b)Dp)((a,b)Dp)~* = Dp. So (a,b)Dp is invertible, and since
Dp is quasi-local, (a b)Dp = aDp or (a,b)Dp = bDp [5, Proposition
7.4]. Thus, z = ¢ € Dp or r~ = g € Dp.

(3) = (1) Let I be a nonzero finitely generated ideal of D, and let
P be a maximal t-ideal of D. Then I Dp is principal, and hence Dp =
(IDp)(IDp)~t = (IDp)(I'Dp) = (II"*)Dp [9, Lemma 1.4], or II-1 &
P. Thus (II"Y), = D. O

Let N, = {f € D[X]|(Af), = D}. Then N, is a saturated multiplica-
tive subset of D[X], and the ring D[X]y,, called the (v—)Nagata ring,
has many interesting ring-theoretic properties (cf. [8, 2]). For exam-
ple, each invertible ideal of D[X]y, is principal [8, Theorem 2.14] and
I[X]|n, NK =1, and [,[X]n, = I[X]n, for all nonzero fractional ideals
I of D [2, Lemma 2.1]. Also, D is a PuMD if and only if D[X]y, is a
Priifer domain [8, Theorem 3.7].

LEmMMA 5. If A, B € Z(D), then

1) A[X]n, + B[X]n, = (A+ B)[X]n,,

2) AlX]n, N BX]y, = (AN B)[X],,

3) (A[X]n,) - (B[X]x.) = (AB)[X]y,, and

4) (A[X]n, : B[X]|n,) = (A : B)[X], if B is finitely generated.

Proof. (1), (2) and (3) Clear (cf. Lemma 3). (4) If a € (A : B), then
aB C A, and hence aB[X|y, € A[X]n,. Thus, a € (A[X]n, : B[X]N,),
and so (A : B)[X]n, C (A[X]w, : B[X]n,). For the reverse containment,
let B = (ai,...,a,). If u € D[X] such that uB[X]y, C A[X]y,, then
ua; € A[X]|y, for i = 1,...,n. Hence there is an f; € N, with uf;a; €
A[X]. So if we set f = fi--- fn, then ufB C A[X], and so A,;B C A.
Hence A,y C(A: B) = uf € (A: B)[X], = u e (A: B)[X]y,. Thus,
(A[X]n, : B[X]n,) € (A: B)[X]w,. 0

We next give the main result of this paper, whose proofs heavily

depend on the proofs of [5, Theorem 25.2], and in its proofs we use the
results of Lemmas 2, 3, and 4 without any comment.

P e

THEOREM 6. The following statements are equivalent for an integral
domain D.



340 Gyu Whan Chang

(1) D is a PvMD.

(2) (AN(B+C))w = ((ANB)+(ANCQC)), forall A,B,C € Z(D).
(3) (A (BHC)) = (ABNAC), for all A,B,C € (D).

(4) ((A+ B)(AN B)),, = (AB),, for aHA B € I(D).

(5) ((A+B): ) =(A:C)+(B:C)), for all A, B,C € Z(D) with

C' finitely generated.
(6) ((a:b)+ (b:a)), =D for all nonzero a,b € D.
(7) (A: (BNC))w=((A: B)+(A:C)), for all A, B,C € I(D) with
, C finitely generated.
(8)
9) A[X

) for all A,B,C € Z(D

(10) (A[X]w, + BIX]n,)(A[X]n, N B[X]x,) = AlX],
A, B € I(D).

(11) ((A[X]n, + B[X]n,) : C[X]y,) = (AlX]n, : C[X]n,) + (B[X], :
C[X]n,) for all A, B,C € Z(D) with C ﬁmte]y generated.

(12) (aD[X]y, : bD[X]x,) + (bDX], : aD[X]x,) = D[X]y, for all

onzero a, b eD.

N (B[X]n, + C[X

B

AlX]n, In,) = (A[X]n, N B[X]n,) + (A[X]n, N
C[X]n,) for all A, B,C € Z(D).
AlX]n,

v

(B[X]n,NC[X]N,) = (A[X]n, B[X]n,)N(AX]w, -ClX]x,)

v v v

- B[X]p, for all

Proof. Let P be a maximal t-ideal of D. Hence if D is a PuMD, the
Dp is a valuation domain by Lemma 4.

(1) = (2) We may assume BDp C CDp, because Dp is a valuation
domain. Hence (AN (B + C))Dp = ADp N (BDp + CDp) = ADp N
CDp = (ADpNBDp)+(ADpNCDp) = (AN B) + (ANC))Dp. Thus,
by Lemma 2, we have (AN (B+C))y = ((ANB)+ (ANC))y.

(2) = (6) For any nonzero a,b € D, we have a € aDp N ((a —
b)Dp +bDp) = ()N ((a - b) + (6)))Dp = ((a) A ((a—b) + (8))). Dp =
(((@) N (a=1b)) + ((a) N (b)))wDp = (((a) N (a— b)) + ((a) N (b)) Dp =
(aDp N (a —b)Dp) + (aDp NbDp). Hence a = (a — b)x + y, or b =
a(x—1)+y for some x € Dp and y € aDpNbDp. Thus, x € (aDp : bDp),
while a(1 —z) = y — bz € bDp; so 1 —x € (bDp : aDp). Hence
l=xz+(1—2x) € (aDp :bDp)+ (bDp : aDp) = ((a : b) + (b : a))Dp.
Thus, 1 € Npermax(p)((@ ) + (b :a))Dp = ((a:b) 4+ (b: a))y,, and so
((a:0)+(b:a)),=D.

(6) = (1) Let a,b € D be nonzero. Since ((a:b) + (b: a)), = D, we
have (a:b) € Por (b:a) L P. If (a:b) € P, then Dp = (a: b)Dp =
(aDp : bDp); so b € aDp. Similarly, (b: a) € P implies a € bDp. Hence
Dp is a valuation domain, and thus D is a PvMD.
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(1) = (3) Assume BDp C CDp, because Dp is a valuation do-
main. Hence (A(BNC))Dp = ADp(BDp N CDp) = (ADp)(BDp) =
(ADp)(BDp) N (ADp)(CDp) = (ABN AC)Dp. Thus, (A(BNC)), =
(ABN AC),.

(3) = (4) By (3), we have (A+ B)(ANB))y = (A+B)AN(A+
B)B), 2 (AB),. Conversely, (A+ B)(ANB) = A(ANB)+B(ANB) C
AB, and hence ((A+B)(ANB)), C (AB),. Thus, (A+B)(ANB)), =
(AB)w

(4) = (1) For any nonzero a,b € D, we have ((a,b)((a) N (b))w =
(ab),, = (ab) by (4), and since (ab) is t- 1nvert1ble (a, b) is also t-invertible.
Thus, D is a PoMD.

(1) = (5) Assume ADp C BDp, because Dp is a valuation domain.
Then (ADp : CDp) C (BDp : CDp), and hence ((A+ B) : C)Dp =
((ADP + BDP) : CDP) = (BDP : CDP> = (ADP : CDP) + (BDP :
CDp)=((A:C)+(B:C))Dp. Thus, (A+B):C),=((A:C)+ (B
C))p-

() = (6) ((a: b) + (b : a))w = (((a) : (a,0)) + ((b) : (a,0)))w =
(((a) + () : (a,0))w = D.

(1) = (7) First, since BNC' C B and BNC' C C, we have (A : B)+(A:
C)C (A:(BNC));hence (A: B)+(A:C))y C(A: (BNC))y. For the
reverse containment, assume BDp C C'Dp, because Dp is a valuation
domain. Hence (A : (BN C))Dp C (ADp : (BN C)Dp) = (ADp :
(BDP N CDP)) (ADP BDP) = (ADP . BDP) + (ADP . CDP) =
(A:B)+ (A:C))Dp. Thus (A: (BNC))y=(A:B)+ (A:C))y.

(7) = (6) D = (((a)N (b)) : ((a)N(b)))w = ((((a) N (b)) : (a)) +(((a)
(0)) : (0)w = (((@) : (0)) + ((0) : (@)))uw-

(1) = (8), (9), (10), (11) and (12). These follow directly from Theo-
rem 1, because D[X]y, is a Priifer domain.

(8) = (2) By (8) and Lemma 5, (AN (B + C))[X]n, = (AN B) +
(AN C)[X]x, Thus, (AN (B +C)) = (AN (B + C)[X]y, N K
(ANB)+(ANC)[X]n,NK =((ANB)+ (ANC))y [2, Lemma 2.1].

(9) = (3), (10) = (4), (11) = (5), (12) = (6). These can be proved

by the same way as the proof of (8) = (2) above. O

REMARK 7. Let (7),, denote the condition (i) X, = Y., of Theorem 6,
and let (7); be the condition X; = Y;.

(1) It is known that D is a PuMD if and only if D is integrally closed
and t = w [8, Theorem 3.4]. Hence if D is a PuMD, then the (2); holds,
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ie, (AN(B+C)):=((ANB)+(ANC)) for all A, B,C € Z(D). (Also,
D being a PvMD implies the (3), (4):, (5)s, (6); and (7);.)

(2) Since t-Max(D) = w-Max(D), we have A, = D < A, = D for
A € Z(D). Thus by the (1) < (6) of Theorem 6, D is a PvMD if and
only if the (6); holds, i.e., ((a : b) + (b : a))y = D for all a,b € D.
However, we don’t know if the (2), (3)s, (4)s, (5): or (7); imply that D
is a PuMD.

Acknowledgement The author would like to thank the referee for
his/her useful suggestions.

References

[1] D.D. Anderson and S.J. Cook, Two star operations and their induced lattices,
Comm. Algebra 28(2000), 2461-1475.

[2] G.W. Chang, Strong Mori domains and the ring D[ X|n,, J. Pure Appl. Algebra
197(2005), 293-304.

[3] G.W. Chang, Prifer x-multiplication domains, Nagata rings, and Kronecker
function rings, J. Algebra 319(2008), 309-319.

[4] D.E. Dobbs, E.G. Houston, T.G. Lucas, and M. Zafrullah, t-linked overrings
and Prifer v-multiplication domains, Comm. Algebra 17(1989), 2835-2852.

[5] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.

[6] M. Griffin, Some results on v-multiplication rings, Canad. J. Math. 19(1967),
710-722.

[7] C.U. Jensen, On characterizations of Prifer rings, Math. Scand. 13(1963), 90—
98.

[8] B.G. Kang, Priifer v-multiplication domains and the ring R[X]y,, J. Algebra
123(1989), 151-170.

[9] M. Zafrullah, Putting t-invertibility to use, in : Non-Noetherian Commutative
Ring Theory, in: Math. Appl., vol. 520, Kluwer Acad. Publ., Dordrecht, 2000,
429-457.

Department of Mathematics
University of Incheon
Incheon 402-749, Korea.

E-mail: whan@incheon.ac.kr



