GENERALIZED FUZZY CONGRUENCES ON SEMIGROUPS

Inheung Chon

Abstract

We define a G-fuzzy congruence, which is a generalized fuzzy congruence, discuss some of its basic properties, and characterize the G-fuzzy congruence generated by a fuzzy relation on a semigroup. We also give certain lattice theoretic properties of Gfuzzy congruences on semigroups.

1. Introduction

The concept of a fuzzy relation was first proposed by Zadeh ([7]). Subsequently, Goguen ([1]) and Sanchez ([6]) studied fuzzy relations in various contexts. In [4] Nemitz discussed fuzzy equivalence relations, fuzzy functions as fuzzy relations, and fuzzy partitions. Murali ([3]) developed some properties of fuzzy equivalence relations and certain lattice theoretic properties of fuzzy equivalence relations. The standard definition of a reflexive fuzzy relation μ on a set X, which most mathematicians used in their papers, is $\mu(x, x)=1$ for all $x \in X$. Gupta et al. ([2]) weakened this standard definition to $\mu(x, x)>0$ for all $x \in X$ and $\inf _{t \in X} \mu(t, t) \geq \mu(y, z)$ for all $y \neq z \in X$, which is called G-reflexive fuzzy relation, and redefined a G-fuzzy equivalence relation on a set and developed some properties of that relation. Samhan ([5]) defined a fuzzy congruence based on the standard definition of a reflexive fuzzy relation, found the fuzzy congruence generated by a fuzzy relation on a semigroup, and developed some lattice theoretic properties of fuzzy congruences. The present work has been started as a continuation of these studies.

[^0]In section 2 we define a generalized fuzzy congruence based on the G-reflexive fuzzy relation, which is called a G-fuzzy congruence in this note, and review some basic properties of fuzzy relations which will be used in next sections. In section 3 we discuss some basic properties of G-fuzzy congruences, find the G-fuzzy congruence generated by a fuzzy relation μ on a semigroup S such that $\mu(x, y)>0$ for some $x \neq y \in S$, and characterize the G-fuzzy congruence generated by a fuzzy relation μ on a semigroup S such that $\mu(x, y)=0$ for all $x \neq y \in S$. In section 4 we find sufficient conditions for the composition $\mu \circ \nu$ of two G-fuzzy congruences μ and ν on a semigroup to be the G-fuzzy congruence generated by $\mu \cup \nu$, show that for the collection $C(S)$ of all G-fuzzy congruences on a semigroup S and $0<k \leq 1$, $C_{k}(S)=\{\mu \in C(S): \mu(c, c)=k$ for all $c \in S\}$ is a complete lattice and any sublattice H of $C_{k}(S)$ such that $\mu \circ \nu=\nu \circ \mu$ for all $\mu, \nu \in H$ is modular, and show that if S is a group, $\left(C_{k}(S),+, \cdot\right)$ is modular.

2. Preliminaries

We recall some definitions and properties of fuzzy relations and Gfuzzy congruences which will be used in next sections.

Definition 2.1. A function B from a set X to the closed unit interval $[0,1]$ in \mathbb{R} is called a fuzzy set in X. For every $x \in B, B(x)$ is called a membership grade of x in B.

The standard definition of a fuzzy reflexive relation μ in a set X demands $\mu(x, x)=1$. Gupta et al. ([2]) weakened this definition as follows.

Definition 2.2. A fuzzy relation μ in a set X is a fuzzy subset of $X \times X . \mu$ is G-reflexive in X if $\mu(x, x)>0$ and $\inf _{t \in X} \mu(t, t) \geq \mu(x, y)$ for all $x, y \in X$ such that $x \neq y$. μ is symmetric in X if $\mu(x, y)=\mu(y, x)$ for all x, y in X. The composition $\lambda \circ \mu$ of two fuzzy relations λ, μ in X is the fuzzy subset of $X \times X$ defined by

$$
(\lambda \circ \mu)(x, y)=\sup _{z \in X} \min (\lambda(x, z), \mu(z, y)) .
$$

A fuzzy relation μ in X is transitive in X if $\mu \circ \mu \subseteq \mu$. A fuzzy relation μ in X is called G-fuzzy equivalence relation if μ is G-reflexive, symmetric, and transitive.

Let \mathcal{F}_{X} be the set of all fuzzy relations in a set X. Then it is easy to see that the composition \circ is associative, \mathcal{F}_{X} is a monoid under the operation of composition \circ, and a G-fuzzy equivalence relation is an idempotent element of \mathcal{F}_{X}.

Definition 2.3. A fuzzy relation μ in a set X is called fuzzy left (right) compatible if $\mu(x, y) \leq \mu(z x, z y)(\mu(x, y) \leq \mu(x z, y z))$ for all $x, y, z \in X$. A G-fuzzy equivalence relation on X is called a G-fuzzy left congruence (right congruence) if it is fuzzy left compatible (right compatible). A G-fuzzy equivalence relation on X is a G-fuzzy congruence if it is a G-fuzzy left and right congruence.

Definition 2.4. Let μ be a fuzzy relation in a set $X . \mu^{-1}$ is defined as a fuzzy relation in X by $\mu^{-1}(x, y)=\mu(y, x)$.

It is easy to see that $(\mu \circ \nu)^{-1}=\nu^{-1} \circ \mu^{-1}$ for fuzzy relations μ and ν.

Proposition 2.5. Let μ be a fuzzy relation on a set X. Then $\cup_{n=1}^{\infty} \mu^{n}$ is the smallest transitive fuzzy relation on X containing μ, where $\mu^{n}=\mu \circ \mu \circ \cdots \circ \mu$.

Proof. See Proposition 2.3 of [5].
Proposition 2.6. Let μ be a fuzzy relation on a set X. If μ is symmetric, then so is $\cup_{n=1}^{\infty} \mu^{n}$, where $\mu^{n}=\mu \circ \mu \circ \cdots \circ \mu$.

Proof. See Proposition 2.4 of [5].
Proposition 2.7. If μ is a fuzzy relation on a semigroup S that is fuzzy left and right compatible, then so is $\cup_{n=1}^{\infty} \mu^{n}$, where $\mu^{n}=$ $\mu \circ \mu \circ \cdots \circ \mu$.

Proof. See Proposition 3.6 of [5].
Proposition 2.8. If μ is a G-reflexive fuzzy relation on a set X, then $\mu^{n+1}(x, y) \geq \mu^{n}(x, y)$ for all natural numbers n and all $x, y \in X$.

Proof. Note that

$$
\begin{aligned}
\mu^{2}(x, y) & =(\mu \circ \mu)(x, y)=\sup _{z \in X} \min [\mu(x, z), \mu(z, y)] \\
& \geq \min [\mu(x, x), \mu(x, y)]=\mu(x, y) .
\end{aligned}
$$

Suppose $\mu^{k+1}(x, y) \geq \mu^{k}(x, y)$ for all $x, y \in X$. Then

$$
\begin{aligned}
\mu^{k+2}(x, y) & =\left(\mu \circ \mu^{k+1}\right)(x, y)=\sup _{z \in S} \min \left[\mu(x, z), \mu^{k+1}(z, y)\right] \\
& \geq \sup _{z \in S} \min \left[\mu(x, z), \mu^{k}(z, y)\right] \\
& =\left(\mu \circ \mu^{k}\right)(x, y)=\mu^{k+1}(x, y) .
\end{aligned}
$$

By the mathematical induction, $\mu^{n+1}(x, y) \geq \mu^{n}(x, y)$ for $n=1,2, \ldots$.
Proposition 2.9. Let μ and each ν_{i} be fuzzy relations in a set X for all $i \in I$. Then $\mu \circ\left(\cap_{i \in I} \nu_{i}\right) \subseteq \bigcap_{i \in I}\left(\mu \circ \nu_{i}\right)$ and $\left(\cap_{i \in I} \nu_{i}\right) \circ \mu \subseteq \cap_{i \in I}\left(\nu_{i} \circ \mu\right)$.

Proof. Straightforward.

3. G-fuzzy congruences on semigroups

In this section we develop some basic properties of G-fuzzy congruences and characterize the G-fuzzy congruence generated by a fuzzy relation on a semigroup.

Proposition 3.1. Let μ be a fuzzy relation on a set S. If μ is G-reflexive, then so is $\cup_{n=1}^{\infty} \mu^{n}$, where $\mu^{n}=\mu \circ \mu \circ \cdots \circ \mu$.

Proof. Clearly $\mu^{1}=\mu$ is G-reflexive. Suppose μ^{k} is G-reflexive.

$$
\begin{aligned}
\mu^{k+1}(x, x) & =\left(\mu^{k} \circ \mu\right)(x, x)=\sup _{z \in S} \min \left[\mu^{k}(x, z), \mu(z, x)\right] \\
& \geq \min \left[\mu^{k}(x, x), \mu(x, x)\right]>0
\end{aligned}
$$

for all $x \in S$. Let $x, y \in S$ with $x \neq y$. Then

$$
\begin{aligned}
& \inf _{t \in S} \mu^{k+1}(t, t)=\inf _{t \in S}\left(\mu^{k} \circ \mu\right)(t, t) \\
& =\inf _{t \in S} \sup _{z \in S} \min \left[\mu^{k}(t, z), \mu(z, t)\right] \geq \inf _{t \in S} \min \left[\mu^{k}(t, t), \mu(t, t)\right] \\
& \geq \min \left[\inf _{t \in S} \mu^{k}(t, t), \inf _{t \in S} \mu(t, t)\right] \\
& \geq \min \left[\mu^{k}(x, z), \mu(z, y)\right]
\end{aligned}
$$

for all $z \in S$ such that $z \neq x$ and $z \neq y$. That is, $\inf _{t \in S} \mu^{k+1}(t, t) \geq$ $\sup _{z \in S-\{x, y\}} \min \left[\mu^{k}(x, z), \mu(z, y)\right]$. Clearly $\inf _{t \in S} \mu(t, t) \geq \min \left[\mu^{k}(x, x)\right.$, $\mu(x, y)]$ and $\inf _{t \in S} \mu^{k}(t, t) \geq \min \left[\mu^{k}(x, y), \mu(y, y)\right]$. Since $\mu^{k+1}(t, t) \geq$ $\mu^{k}(t, t) \geq \mu(t, t)$ for $k \geq 1$ by Proposition 2.8,

$$
\inf _{t \in S} \mu^{k+1}(t, t) \geq \min \left[\mu^{k}(x, x), \mu(x, y)\right]
$$

and $\inf _{t \in S} \mu^{k+1}(t, t) \geq \min \left[\mu^{k}(x, y), \mu(y, y)\right]$. Thus

$$
\begin{aligned}
& \inf _{t \in S} \mu^{k+1}(t, t) \geq \max \left[\sup _{z \in S-\{x, y\}}\right. \min \left(\mu^{k}(x, z), \mu(z, y)\right) \\
&\left.\min \left(\mu^{k}(x, x), \mu(x, y)\right), \min \left(\mu^{k}(x, y), \mu(y, y)\right)\right] \\
&=\sup _{z \in S} \min \left[\mu^{k}(x, z), \mu(z, y)\right]=\left(\mu^{k} \circ \mu\right)(x, y)=\mu^{k+1}(x, y)
\end{aligned}
$$

That is, μ^{k+1} is G-reflexive. By the mathematical induction, μ^{n} is Greflexive for $n=1,2, \ldots$. Thus $\inf _{t \in S}\left[\cup_{n=1}^{\infty} \mu^{n}\right](t, t)=\inf _{t \in S} \sup [\mu(t, t),(\mu \circ$ $\mu)(t, t), \ldots] \geq \sup \left[\inf _{t \in S} \mu(t, t), \inf _{t \in S}(\mu \circ \mu)(t, t), \ldots\right] \geq \sup [\mu(x, y)$, $(\mu \circ \mu)(x, y), \ldots]=\left[\cup_{n=1}^{\infty} \mu^{n}\right](x, y)$. Clearly $\left[\cup_{n=1}^{\infty} \mu^{n}\right](x, x)>0$. Hence $\cup_{n=1}^{\infty} \mu^{n}$ is G-reflexive.

Proposition 3.2. Let μ and ν be G-fuzzy congruences in a set X. Then $\mu \cap \nu$ is a G-fuzzy congruence.

Proof. It is clear that $\mu \cap \nu$ is G-reflexive and symmetric. By Proposition 2.9, $[(\mu \cap \nu) \circ(\mu \cap \nu)] \subseteq[\mu \circ(\mu \cap \nu)] \cap[\nu \circ(\mu \cap \nu)] \subseteq$ $[(\mu \circ \mu) \cap(\mu \circ \nu)] \cap[(\nu \circ \mu) \cap(\nu \circ \nu)] \subseteq[\mu \cap(\mu \circ \nu)] \cap[(\nu \circ \mu) \cap \nu] \subseteq \mu \cap \nu$. That is, $\mu \cap \nu$ is transitive. Clearly $\mu \cap \nu$ is fuzzy left and right compatible. Thus $\mu \cap \nu$ is a G-fuzzy congruence.

It is easy to see that even though μ and ν are G-fuzzy congruences, $\mu \cup \nu$ is not necessarily a G-fuzzy congruence. We provide an explicit form of the G-fuzzy congruence generated by $\mu \cup \nu$ in the following proposition.

Proposition 3.3. Let μ and ν be G-fuzzy congruences on a semigroup S. Then the G-fuzzy congruence generated by $\mu \cup \nu$ in S is $\cup_{n=1}^{\infty}(\mu \cup \nu)^{n}=(\mu \cup \nu) \cup[(\mu \cup \nu) \circ(\mu \cup \nu)] \cup \ldots$

Proof. Clearly $(\mu \cup \nu)(x, x)>0$ and

$$
\begin{aligned}
& \inf _{t \in S}(\mu \cup \nu)(t, t)=\inf _{t \in S} \max (\mu(t, t), \nu(t, t)) \\
& \geq \max \left(\inf _{t \in S} \mu(t, t), \inf _{t \in S} \nu(t, t)\right) \\
& \geq \max (\mu(x, y), \nu(x, y)) \\
& =(\mu \cup \nu)(x, y)
\end{aligned}
$$

for all $x \neq y$ in S. That is, $\mu \cup \nu$ is G-reflexive. By Proposition 3.1, $\cup_{n=1}^{\infty}(\mu \cup \nu)^{n}$ is G-reflexive. Clearly $\mu \cup \nu$ is symmetric. By Proposition 2.6, $\cup_{n=1}^{\infty}(\mu \cup \nu)^{n}$ is symmetric. By Proposition 2.5, $\cup_{n=1}^{\infty}(\mu \cup \nu)^{n}$ is transitive. Hence $\cup_{n=1}^{\infty}(\mu \cup \nu)^{n}$ is a G-fuzzy equivalence relation containing $\mu \cup \nu$. It is straightforward to see that $\mu \cup \nu$ is fuzzy left and right compatible. By Proposition 2.7, $\cup_{n=1}^{\infty}(\mu \cup \nu)^{n}$ is fuzzy left and right compatible. Thus $\cup_{n=1}^{\infty}(\mu \cup \nu)^{n}$ is a G-fuzzy congruence containing $\mu \cup \nu$. Let λ be a G-fuzzy congruence in S containing $\mu \cup \nu$. Then $\cup_{n=1}^{\infty}(\mu \cup \nu)^{n} \subseteq \cup_{n=1}^{\infty} \lambda^{n}=\lambda \cup(\lambda \circ \lambda) \cup(\lambda \circ \lambda \circ \lambda) \cup \cdots \subseteq \lambda \cup \lambda \cup \cdots=$ λ. Thus $\cup_{n=1}^{\infty}(\mu \cup \nu)^{n}$ is the G-fuzzy congruence generated by $\mu \cup \nu$. \square

We now turn to the characterization of the G-fuzzy congruence generated by a fuzzy relation on a semigroup.

Definition 3.4. Let μ be a fuzzy relation on a semigroup S and let $S^{1}=S \cup\{e\}$, where e is the identity of S. We define the fuzzy relation μ^{*} on S as

$$
\mu^{*}(c, d)=\bigcup_{\substack{x, y \in S^{1}, x a y=c, x b y=d}} \mu(a, b) \text { for all } c, d \in S .
$$

Proposition 3.5. Let μ and ν be two fuzzy relations on a semigroup S. Then
(1) $\mu \subseteq \mu^{*}$
(2) $\left(\mu^{*}\right)^{-1}=\left(\mu^{-1}\right)^{*}$
(3) If $\mu \subseteq \nu$, then $\mu^{*} \subseteq \nu^{*}$
(4) $(\mu \cup \nu)^{*}=\mu^{*} \cup \nu^{*}$
(5) $\mu=\mu^{*}$ if and only if μ is fuzzy left and right compatible
(6) $\left(\mu^{*}\right)^{*}=\mu^{*}$

Proof. See Proposition 3.5 of [5].
Samhan ([5]) found the fuzzy congruence generated by a fuzzy relation on a semigroup. Theorem 3.6 may be considered as a generalization of this work in G-fuzzy congruences.

Theorem 3.6. Let μ be a fuzzy relation on a semigroup S.
(1) If $\mu(x, y)>0$ for some $x \neq y \in S$, then the G-fuzzy congruence generated by μ is $\cup_{n=1}^{\infty}\left[\mu^{*} \cup\left(\mu^{*}\right)^{-1} \cup \theta^{*}\right]^{n}$, where θ is a fuzzy relation on S such that $\theta(z, z)=\sup _{x \neq y \in S} \mu(x, y)$ for all $z \in S$ and $\theta(x, y)=\theta(y, x) \leq \min [\mu(x, y), \mu(y, x)]$ for all $x, y \in S$ with $x \neq y$, and μ^{*} and θ^{*} are fuzzy relations on S defined in Definition 3.4.
(2) If $\mu(x, y)=0$ for all $x \neq y \in S$ and $\mu(z, z)>0$ for all $z \in S$, then the G-fuzzy congruence generated by μ is $\cup_{n=1}^{\infty}\left(\mu^{*}\right)^{n}$, where μ^{*} is a fuzzy relation on S defined in Definition 3.4.
(3) If $\mu(x, y)=0$ for all $x \neq y \in S, \mu(z, z)=0$ for some $z \in S$, and $\mu^{*}(z, z)>0$ for all $z \in S$, then the G-fuzzy congruence generated by μ is $\cup_{n=1}^{\infty}\left(\mu^{*}\right)^{n}$, where μ^{*} is a fuzzy relation on S defined in Definition 3.4.
(4) If $\mu(x, y)=0$ for all $x \neq y \in S, \mu(z, z)=0$ for some $z \in S$, and $\mu^{*}(z, z)=0$ for some $z \in S$, then there does not exist the G-fuzzy congruence generated by μ.

Proof. (1) Since $\theta(z, z)>0, \theta^{*}(z, z)>0$ for all $z \in S$ by Proposition 3.5 (1). Let $x, y \in S$ with $x \neq y$ and let $S^{1}=S \cup\{e\}$, where e is the identity of S. From Definition 3.4, $\mu^{*}(x, y)=\begin{gathered}\substack{c, d \in S^{1}, \\ \text { cad=x, } \\ c b d=y}\end{gathered}, \mu(a, b)$ and $\theta^{*}(x, y)=\cup_{\substack{c, d \in S^{1}, c a d=x, c b d=y}} \theta(a, b)$. Since $c a d=x$ and $c b d=y$ for $c, d \in S^{1}$, $x \neq y$ implies $a \neq b$. Thus $\mu^{*}(x, y) \leq \sup _{x \neq y \in S} \mu(x, y)=\theta(t, t)$ for
all $t \in S$ and $\theta^{*}(x, y) \leq \mu^{*}(x, y)$. That is, $\inf _{z \in S} \theta^{*}(z, z) \geq \theta(t, t) \geq$ $\mu^{*}(x, y) \geq \theta^{*}(x, y)$. Let $\mu_{1}=\mu^{*} \cup\left(\mu^{*}\right)^{-1} \cup \theta^{*}$. Then

$$
\mu_{1}(z, z)=\max \left[\mu^{*}(z, z),\left(\mu^{*}\right)^{-1}(z, z), \theta^{*}(z, z)\right]>0
$$

and

$$
\begin{aligned}
& \inf _{t \in S} \mu_{1}(t, t) \geq \inf _{t \in S} \theta^{*}(t, t) \geq \max \left[\mu^{*}(x, y),\left(\mu^{*}\right)^{-1}(x, y), \theta^{*}(x, y)\right] \\
& =\mu_{1}(x, y)
\end{aligned}
$$

Thus μ_{1} is G-reflexive. By Proposition 3.1, $\cup_{n=1}^{\infty} \mu_{1}^{n}$ is G-reflexive. Since $\theta(x, y)=\theta(y, x), \theta=\theta^{-1}$. By Proposition $3.5(2), \theta^{*}=\left(\theta^{-1}\right)^{*}=$ $\left(\theta^{*}\right)^{-1}$. Thus

$$
\begin{aligned}
\mu_{1}(x, y) & =\max \left[\mu^{*}(x, y),\left(\mu^{*}\right)^{-1}(x, y), \theta^{*}(x, y)\right] \\
& =\max \left[\left(\mu^{*}\right)^{-1}(y, x), \mu^{*}(y, x),\left(\theta^{*}\right)^{-1}(x, y)\right] \\
& =\max \left[\left(\mu^{*}\right)^{-1}(y, x), \mu^{*}(y, x), \theta^{*}(y, x)\right]=\mu_{1}(y, x) .
\end{aligned}
$$

Thus μ_{1} is symmetric. By Proposition 2.6, $\cup_{n=1}^{\infty} \mu_{1}^{n}$ is symmetric. By Proposition 2.5, $\cup_{n=1}^{\infty} \mu_{1}^{n}$ is transitive. Hence $\cup_{n=1}^{\infty} \mu_{1}^{n}$ is a G-fuzzy equivalence relation containing μ. By Proposition 3.5 (2), (4), and (6), $\mu_{1}^{*}=\left(\mu^{*} \cup\left(\mu^{*}\right)^{-1} \cup \theta^{*}\right)^{*}=\left(\mu^{*} \cup\left(\mu^{-1}\right)^{*} \cup \theta^{*}\right)^{*}=\left(\mu^{*}\right)^{*} \cup\left(\left(\mu^{-1}\right)^{*}\right)^{*} \cup$ $\left(\theta^{*}\right)^{*}=\mu^{*} \cup\left(\mu^{-1}\right)^{*} \cup \theta^{*}=\mu^{*} \cup\left(\mu^{*}\right)^{-1} \cup \theta^{*}=\mu_{1}$. Thus μ_{1} is fuzzy left and right compatible by Proposition 3.5 (5). By Proposition 2.7, $\cup_{n=1}^{\infty} \mu_{1}^{n}$ is fuzzy left and right compatible. Thus $\cup_{n=1}^{\infty} \mu_{1}^{n}$ is a G-fuzzy congruence containing μ. Let ν be a G-fuzzy congruence containing μ. Then $\mu(x, y) \leq \nu(x, y), \mu^{-1}(x, y)=\mu(y, x) \leq \nu(y, x)=\nu(x, y)$, and $\theta(x, y) \leq \mu(x, y) \leq \nu(x, y)$. That is, $\left(\mu \cup \mu^{-1} \cup \theta\right)(x, y) \leq \nu(x, y)$ for all $x, y \in S$ such that $x \neq y$. Since $\nu(a, a) \geq \nu(x, y) \geq \mu(x, y)$ for all $a, x, y \in S$ such that $x \neq y, \theta(a, a)=\sup _{x \neq y \in S} \mu(x, y) \leq \nu(a, a)$ for all $a \in S$. Since $\nu(a, a) \geq \mu(a, a)=\mu^{-1}(a, a)$ and $\nu(a, a) \geq \theta(a, a)$ for all $a \in S$, $\max \left[\mu(a, a), \mu^{-1}(a, a), \theta(a, a)\right] \leq \nu(a, a)$ for all $a \in S$. Thus $\mu \cup \mu^{-1} \cup \theta \subseteq \nu$. By Proposition 3.5 (2), (3), and (4), $\mu_{1}=$ $\mu^{*} \cup\left(\mu^{*}\right)^{-1} \cup \theta^{*}=\mu^{*} \cup\left(\mu^{-1}\right)^{*} \cup \theta^{*}=\left(\mu \cup \mu^{-1} \cup \theta\right)^{*} \subseteq \nu^{*}$. Since ν is fuzzy left and right compatible, $\nu=\nu^{*}$ by Proposition 3.5 (5).

Thus $\mu_{1} \subseteq \nu$. Suppose $\mu_{1}^{k} \subseteq \nu$. Then $\mu_{1}^{k+1}(b, c)=\left(\mu_{1}^{k} \circ \mu_{1}\right)(b, c)=$ $\sup _{d \in S} \min \left[\mu_{1}^{k}(b, d), \mu_{1}(d, c)\right] \leq \sup _{d \in S} \min [\nu(b, d), \nu(d, c)]=(\nu \circ \nu)(b, c)$ for all $b, c \in S$. That is, $\mu_{1}^{k+1} \subseteq(\nu \circ \nu)$. Since ν is transitive, $\mu_{1}^{k+1} \subseteq \nu$. By the mathematical induction, $\mu_{1}^{n} \subseteq \nu$ for every natural number n. Thus $\cup_{n=1}^{\infty}\left[\mu^{*} \cup\left(\mu^{*}\right)^{-1} \cup \theta^{*}\right]^{n}=\cup_{n=1}^{\infty} \mu_{1}^{n}=\mu_{1} \cup\left(\mu_{1} \circ \mu_{1}\right) \cup\left(\mu_{1} \circ \mu_{1} \circ \mu_{1}\right) \cdots \subseteq$ ν.
(2) Since $\mu(z, z)>0, \mu^{*}(z, z)>0$ for all $z \in S$ by Proposition 3.5 (1). Let $x, y \in S$ with $x \neq y$. Since $\mu^{*}(x, y) \leq \sup _{x \neq y \in S} \mu(x, y)$ and $\mu(x, y)=0, \mu^{*}(x, y)=0$. Thus $\inf _{t \in S} \mu^{*}(t, t) \geq \mu^{*}(x, y)$. Hence μ^{*} is Greflexive. Since $\mu=\mu^{-1}, \mu^{*}=\left(\mu^{-1}\right)^{*}=\left(\mu^{*}\right)^{-1}$ by Proposition 3.5 (2). Thus μ^{*} is symmetric. By Proposition 2.5, Proposition 2.6, and Proposition 3.1, $\cup_{n=1}^{\infty}\left(\mu^{*}\right)^{n}$ is a G-fuzzy equivalence relation containing μ. By Proposition 3.5 (5) and (6), μ^{*} is fuzzy left and right compatible. By Proposition 2.7, $\cup_{n=1}^{\infty}\left(\mu^{*}\right)^{n}$ is a G-fuzzy congruence containing μ. Let ν be a G-fuzzy congruence containing μ. Since $\mu \subseteq \nu, \mu^{*} \subseteq \nu^{*}$ by Proposition 3.5 (3). Since ν is fuzzy left and right compatible, $\nu^{*}=\nu$ by Proposition 3.5 (5). Thus $\mu^{*} \subseteq \nu$. By the mathematical induction as shown in Theorem 3.6 (1), we may show that $\left(\mu^{*}\right)^{n} \subseteq \nu$ for every natural number n. Hence $\cup_{n=1}^{\infty}\left(\mu^{*}\right)^{n}=\mu^{*} \cup\left(\mu^{*} \circ \mu^{*}\right) \cup\left(\mu^{*} \circ \mu^{*} \circ \mu^{*}\right) \cdots \subseteq \nu$.
(3) The proof is similar to that of (2).
(4) Suppose ξ is the G-fuzzy congruence generated by μ. Then $\xi(z, z)>0$ for every $z \in S$. Let θ be a fuzzy relation such that $\theta(a, b)=\frac{\xi(a, b)}{2}$ for all $a, b \in S$. Then $\theta(z, z)>0$, and hence $\theta^{*}(z, z)>0$ for all $z \in S$ by Proposition 3.5 (1). Let $x, y \in S$ with $x \neq y$. Since $\mu^{*}(x, y) \leq \sup _{x \neq y \in S} \mu(x, y)$ and $\mu(x, y)=0, \mu^{*}(x, y)=0$. Since ξ is fuzzy left and right compatible, $\xi^{*}=\xi$ by Proposition 3.5 (5). Since ξ is G-reflexive and $\xi^{*}=\xi, \inf _{t \in S} \xi^{*}(t, t) \geq \xi^{*}(x, y)$. Since $\theta^{*}(a, b)=\frac{\xi^{*}(a, b)}{2}$ for all $a, b \in S, \inf _{t \in S} \theta^{*}(t, t) \geq \theta^{*}(x, y)$. Thus $\left(\mu^{*} \cup \theta^{*}\right)(z, z)>0$ for all $z \in S$ and $\inf _{t \in S}\left(\mu^{*} \cup \theta^{*}\right)(t, t) \geq\left(\mu^{*} \cup \theta^{*}\right)(x, y)$. That is, $\mu^{*} \cup \theta^{*}$ is G-reflexive. Since ξ is symmetric, θ is symmetric. Since θ is symmetric and $\mu(x, y)=0, \mu \cup \theta=(\mu \cup \theta)^{-1}$. By Proposition $3.5(2),(\mu \cup \theta)^{*}=$ $\left[(\mu \cup \theta)^{-1}\right]^{*}=\left[(\mu \cup \theta)^{*}\right]^{-1}$. Thus $(\mu \cup \theta)^{*}=\mu^{*} \cup \theta^{*}$ is symmetric. By Proposition 2.5, Proposition 2.6, and Proposition 3.1, $\cup_{n=1}^{\infty}\left(\mu^{*} \cup \theta^{*}\right)^{n}$ is a G-fuzzy equivalence relation containing μ. By Proposition 3.5 (4)
and (6), $\left(\mu^{*} \cup \theta^{*}\right)^{*}=\left(\mu^{*}\right)^{*} \cup\left(\theta^{*}\right)^{*}=\mu^{*} \cup \theta^{*}$. Thus $\mu^{*} \cup \theta^{*}$ is fuzzy left and right compatible by Proposition 3.5 (5). By Proposition 2.7, $\cup_{n=1}^{\infty}\left(\mu^{*} \cup \theta^{*}\right)^{n}$ is a G-fuzzy congruence containing μ. Since $\theta(a, b)=$ $\frac{\xi(a, b)}{2} \leq \xi(a, b)$ and $\mu(a, b) \leq \xi(a, b)$ for all $a, b \in S, \mu \cup \theta \subseteq \xi$. Let $\mu_{1}=\mu^{*} \cup \theta^{*}$. By Proposition 3.5 (3) and (4), $\mu_{1}=\mu^{*} \cup \theta^{*}=(\mu \cup \theta)^{*} \subseteq$ ξ^{*}. Since $\xi^{*}=\xi, \mu_{1} \subseteq \xi$. By the mathematical induction as shown in Theorem 3.6 (1), we may show that $\mu_{1}^{n} \subseteq \xi$ for every natural number n. Hence $\cup_{n=1}^{\infty}\left[\mu^{*} \cup \theta^{*}\right]^{n}=\cup_{n=1}^{\infty} \mu_{1}^{n} \subseteq \xi$. Let $v \neq w \in S$. Then $\mu_{1}(v, w)=\left(\mu^{*} \cup \theta^{*}\right)(v, w)=\theta^{*}(v, w) \leq \inf _{t \in S} \theta^{*}(t, t) \leq \mu_{1}(z, z)$ for every $z \in S$. Suppose $\mu_{1}^{k}(v, w) \leq \mu_{1}(z, z)$ for every $z \in S$. Then

$$
\begin{aligned}
& \mu_{1}^{k+1}(v, w)=\sup _{s \in S} \min \left[\mu_{1}^{k}(v, s), \mu_{1}(s, w)\right] \\
& =\max \left[\sup _{s \in S-\{v, w\}} \min \left(\mu_{1}^{k}(v, s), \mu_{1}(s, w)\right), \min \left(\mu_{1}^{k}(v, v), \mu_{1}(v, w)\right),\right. \\
& \left.\min \left(\mu_{1}^{k}(v, w), \mu_{1}(w, w)\right)\right] \\
& \leq \max \left[\mu_{1}(z, z), \mu_{1}(z, z), \mu_{1}^{k}(v, w)\right]=\mu_{1}(z, z) .
\end{aligned}
$$

By the mathematical induction, $\mu_{1}^{n}(v, w) \leq \mu_{1}(z, z)$ for every natural number n. Clearly $\mu_{1}^{k}(z, z)=\mu_{1}(z, z)$ for $k=1$. Suppose $\mu_{1}^{k}(z, z)=$ $\mu_{1}(z, z)$. Since $\mu_{1}^{k}(z, s) \leq \mu_{1}(z, z)$ for $s \neq z \in S, \mu_{1}^{k+1}(z, z)=$ $\sup _{s \in S} \min \left[\mu_{1}^{k}(z, s), \mu_{1}(s, z)\right]=\max \left[\sup _{s \in S-\{z\}} \min \left(\mu_{1}^{k}(z, s), \mu_{1}(s, z)\right)\right.$, $\left.\min \left(\mu_{1}^{k}(z, z), \mu_{1}(z, z)\right)\right]=\mu_{1}(z, z)$. By the mathematical induction, $\mu_{1}^{n}(z, z)=\mu_{1}(z, z)$ for every natural number n and every $z \in S$. Let p be in S with $\mu^{*}(p, p)=0$. Since $\theta(a, b)=\frac{\xi(a, b)}{2}$ and ξ is fuzzy left and right compatible, θ is fuzzy left and right compatible. That is, $\theta=\theta^{*}$. Thus $\mu_{1}(p, p)=\theta^{*}(p, p)=\theta(p, p)=\frac{\xi(p, p)}{2}<\xi(p, p)$. Since $\mu_{1}^{n}(z, z)=\mu_{1}(z, z)$ for every natural number n and every $z \in S$, $\left[\cup_{n=1}^{\infty}\left(\mu^{*} \cup \theta^{*}\right)^{n}\right](p, p)=\left[\cup_{n=1}^{\infty} \mu_{1}^{n}\right](p, p)=\mu_{1}(p, p)<\xi(p, p)$ for some $p \in S$ such that $\mu^{*}(p, p)=0$. Hence $\cup_{n=1}^{\infty}\left(\mu^{*} \cup \theta^{*}\right)^{n}$, which is a G-fuzzy congruence containing μ, is contained in ξ. This contradicts that ξ is the G-fuzzy congruence generated by μ.

4. Lattices of G-fuzzy congruences

In this section we discuss some lattice theoretic properties of G-fuzzy
congruences. Let $C(S)$ be the collection of all G-fuzzy congruences on a semigroup S. It is easy to see that $C(S)$ is not a lattice.

Theorem 4.1. Let $0<k \leq 1$ and let $C_{k}(S)=\{\mu \in C(S)$: $\mu(c, c)=k$ for all $c \in S\}$. Then $\left(C_{k}(S), \leq\right)$ is a complete lattice, where \leq is a relation on the set of all G-fuzzy congruences on S defined by $\mu \leq \nu$ iff $\mu(x, y) \leq \nu(x, y)$ for all $x, y \in S$.

Proof. Clearly \leq is a partial order relation. It is easy to check that the relation σ defined by $\sigma(x, y)=k$ for all $x, y \in S$ is in $C_{k}(S)$ and the relation λ defined by $\lambda(x, y)=k$ for $x=y$ and $\lambda(x, y)=0$ for $x \neq y$ is in $C_{k}(S)$. Also σ is the greatest element and λ is the least element of $C_{k}(S)$ with respect to the ordering \leq. Let $\left\{\mu_{j}\right\}_{j \in J}$ be a non-empty collection of G-fuzzy congruences in $C_{k}(S)$. Let $\mu(x, y)=$ $\inf _{j \in J} \mu_{j}(x, y)$ for all $x, y \in S$. It is easy to see that $\mu(x, x)>0$ for all $x \in S, \inf _{t \in X} \mu(t, t) \geq \mu(y, z)$ for all $y \neq z \in X, \mu=\mu^{-1}, \mu(x, y) \leq$ $\mu(z x, z y)$, and $\mu(x, y) \leq \mu(x z, y z)$ for all $x, y, z \in S . \mu \circ \mu(x, y)=$ $\sup _{z \in X} \min \left[\inf _{j \in J} \mu_{j}(x, z), \inf _{j \in J} \mu_{j}(z, y)\right]=\sup _{z \in X} \inf _{j \in J} \inf _{i \in J} \min \left[\mu_{j}(x, z), \mu_{i}(z, y)\right] \leq$ $\sup _{z \in X} \inf _{j \in J} \min \left[\mu_{j}(x, z), \mu_{j}(z, y)\right] \leq \inf _{j \in J} \mu_{j} \circ \mu_{j}(x, y) \leq \inf _{j \in J} \mu_{j}(x, y)=$ $\mu(x, y)$. That is, $\mu \in C_{k}(S)$. Since μ is the greatest lower bound of $\left\{\mu_{j}\right\}_{j \in J},\left(C_{k}(S), \leq\right)$ is a complete lattice.

We define addition and multiplication on $C_{k}(S)$ by $\mu+\nu=<\mu \cup \nu>_{c}$ and $\mu \cdot \nu=\mu \cap \nu$, where $\langle\mu \cup \nu\rangle_{c}$ is the G-fuzzy congruence generated by $\mu \cup \nu$.

Definition 4.2. A lattice $(L,+, \cdot)$ is called modular if $(x+y) \cdot z \leq$ $x+(y \cdot z)$ for all $x, y, z \in L$ with $x \leq z$.

Lemma 4.3. Let μ and ν be G-fuzzy congruences on a semigroup S such that

$$
\mu(c, c)=\nu(c, c) \quad \text { for all } c \in S
$$

If $\mu \circ \nu=\nu \circ \mu$, then $\mu \circ \nu$ is the G-fuzzy congruence on S generated by $\mu \cup \nu$.

Proof. Clearly $(\mu \circ \nu)(a, a)>0$ for all $a \in S$. Let $x, y \in S$ with $x \neq y$. Since $\mu(c, c)=\nu(c, c)$ for all $c \in S, \inf _{t \in S} \mu(t, t)=\inf _{t \in S} \nu(t, t) \geq$
$\max [\mu(x, y), \nu(x, y)]$. Thus

$$
\begin{aligned}
\inf _{t \in S}(\mu \circ \nu)(t, t) & =\inf _{t \in S} \sup _{z \in S} \min [\mu(t, z), \nu(z, t)] \\
& \geq \inf _{t \in S} \min [\mu(t, t), \nu(t, t)] \\
& \geq \min \left[\inf _{t \in S} \mu(t, t), \inf _{t \in S} \nu(t, t)\right] \\
& \geq \max [\mu(x, y), \nu(x, y)] .
\end{aligned}
$$

Also

$$
\inf _{t \in S}(\mu \circ \nu)(t, t) \geq \min \left[\inf _{t \in S} \mu(t, t), \inf _{t \in S} \nu(t, t)\right] \geq \min [\mu(x, z), \nu(z, y)]
$$

for all $z \in S$ such that $z \neq x$ and $z \neq y$. That is,

$$
\inf _{t \in S}(\mu \circ \nu)(t, t) \geq \sup _{z \in S-\{x, y\}} \min [\mu(x, z), \nu(z, y)] .
$$

Thus

$$
\begin{aligned}
& \inf _{t \in S}(\mu \circ \nu)(t, t) \\
& \geq \max \left[\sup _{z \in S-\{x, y\}} \min (\mu(x, z), \nu(z, y)), \max (\mu(x, y), \nu(x, y))\right] \\
& =\max \left[\sup _{z \in S-\{x, y\}} \min (\mu(x, z), \nu(z, y)), \nu(x, y), \mu(x, y)\right] \\
& =\max \left[\sup _{z \in S-\{x, y\}} \min (\mu(x, z), \nu(z, y)), \min (\mu(x, x), \nu(x, y)),\right. \\
& \min (\mu(x, y), \nu(y, y))] \\
& =\sup _{z \in S} \min [\mu(x, z), \nu(z, y)]=(\mu \circ \nu)(x, y) .
\end{aligned}
$$

That is, $\mu \circ \nu$ is G-reflexive. Since μ and ν are symmetric, $(\mu \circ \nu)^{-1}=$ $\nu^{-1} \circ \mu^{-1}=\nu \circ \mu=\mu \circ \nu$. Thus $\mu \circ \nu$ is symmetric. Since μ and ν are transitive and the operation \circ is associative, $(\mu \circ \nu) \circ(\mu \circ \nu)=$ $\mu \circ(\nu \circ \mu) \circ \nu=\mu \circ(\mu \circ \nu) \circ \nu=(\mu \circ \mu) \circ(\nu \circ \nu) \subseteq \mu \circ \nu$. Hence $\mu \circ \nu$ is a G-fuzzy equivalence relation. Since S is a semigroup, $(\mu \circ$ $\nu)(x, y)=\sup _{a \in S} \min [\mu(x, a), \nu(a, y)] \leq \sup _{z a \in S} \min [\mu(z x, z a), \nu(z a, z y)] \leq$ $\sup _{t \in S} \min [\mu(z x, t), \nu(t, z y)]=(\mu \circ \nu)(z x, z y)$. Thus $\mu \circ \nu$ is fuzzy left compatible. Similarly we may show $\mu \circ \nu$ is fuzzy right compatible. Hence
$\mu \circ \nu$ is a G-fuzzy congruence in S. Since $\nu(y, y)=\mu(y, y) \geq \mu(x, y),(\mu \circ$ $\nu)(x, y)=\sup _{z \in S} \min [\mu(x, z), \nu(z, y)] \geq \min (\mu(x, y), \nu(y, y))=\mu(x, y)$.
Since $\mu(x, x)=\nu(x, x) \geq \nu(x, y),(\mu \circ \nu)(x, y)=\sup _{z \in S} \min [\mu(x, z), \nu(z, y)] \geq$ $\min (\mu(x, x), \nu(x, y))=\nu(x, y)$.

Thus $(\mu \circ \nu)(x, y) \geq \max (\mu(x, y), \nu(x, y))=(\mu \cup \nu)(x, y)$ for all $x, y \in S$ such that $x \neq y$. Since $\mu(c, c)=\nu(c, c)$ for all $c \in S,(\mu \circ$ $\nu)(c, c)=\sup _{p \in S} \min [\mu(c, p), \nu(p, c)] \geq \min (\mu(c, c), \nu(c, c))=(\mu \cup \nu)(c, c)$ for all $c \in S$. Thus $\mu \cup \nu \subseteq \mu \circ \nu$. Let λ be a G-fuzzy congruence in S containing $\mu \cup \nu$. Since λ is transitive, $\mu \circ \nu \subseteq(\mu \cup \nu) \circ(\mu \cup \nu) \subseteq \lambda \circ \lambda \subseteq \lambda$. Thus $\mu \circ \nu$ is the G-fuzzy congruence generated by $\mu \cup \nu$.

It is well known that if μ and ν are congruences on a semigroup S and $\mu \circ \nu=\nu \circ \mu$, then $\mu \circ \nu$ is the congruence on S generated by $\mu \cup \nu$. Lemma 4.3 may be considered as a generalization of this in G-fuzzy congruences.

Theorem 4.4. Let $0<k \leq 1$ and let S be a semigroup and H be a sublattice of $\left(C_{k}(S),+, \cdot\right)$ such that $\mu \circ \nu=\nu \circ \mu$ for all $\mu, \nu \in H$. Then H is a modular lattice.

Proof. Let $\mu, \nu, \rho \in H$ with $\mu \leq \rho$. Let $x, y \in S$.

$$
\begin{aligned}
& \min [(\mu \circ \nu)(x, y), \rho(x, y)]=\sup _{z \in S} \min [\mu(x, z), \nu(z, y), \rho(x, y)] \\
& \leq \sup _{z \in S} \min [\mu(x, z), \rho(x, z), \nu(z, y), \rho(x, y)] \\
& \leq \sup _{z \in S} \min [\mu(x, z), \nu(z, y), \rho(z, y)] \\
& =[\mu \circ \min (\nu, \rho)](x, y)
\end{aligned}
$$

Thus $(\mu \circ \nu) \cdot \rho \leq \mu \circ(\nu \cdot \rho)$. Since $\mu, \nu \in C_{k}(S), \mu(c, c)=\nu(c, c)=k$ for all $c \in S$. By Lemma 4.3, $\mu \circ \nu$ is the G-fuzzy congruence generated by $\mu \cup \nu$. That is, $\mu+\nu=\mu \circ \nu$. Similarly we may show $\mu+(\nu \cdot \rho)=\mu \circ(\nu \cdot \rho)$. Thus $(\mu+\nu) \cdot \rho \leq \mu+(\nu \cdot \rho)$. Hence H is modular.

Proposition 4.5. If S is a group, then $\mu \circ \nu=\nu \circ \mu$ for all $\mu, \nu \in$ $C_{k}(S)$.

Proof. Straightforward.
Corollary 4.6. If S is a group and $0<k \leq 1$, then $\left(C_{k}(S),+, \cdot\right)$ is modular.

Proof. By Theorem 4.4 and Proposition $4.5,\left(C_{k}(S),+, \cdot\right)$ is modular.

References

[1] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145-174.
[2] K. C. Gupta and R. K. Gupta, Fuzzy equivalence relation redefined, Fuzzy Sets and Systems 79 (1996), 227-233.
[3] V. Murali, Fuzzy equivalence relation, Fuzzy Sets and Systems 30 (1989), 155163.
[4] C. Nemitz, Fuzzy relations and fuzzy function, Fuzzy Sets and Systems 19 (1986), 177-191.
[5] M. Samhan, Fuzzy congruences on semigroups, Inform. Sci. 74 (1993), 165-175.
[6] E. Sanchez, Resolution of composite fuzzy relation equation, Inform. and Control 30 (1976), 38-48.
[7] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.
Department of Mathematics
Seoul Women's University
126 Kongnung 2-Dong, Nowon-Gu
Seoul 139-774, South Korea
E-mail: ihchon@swu.ac.kr

[^0]: Received September 6, 2010. Revised November 13, 2010. Accepted November 19, 2010.

 2000 Mathematics Subject Classification: 03E72.
 Key words and phrases: G-fuzzy equivalence relation, G-fuzzy congruence .
 This work was supported by a special research grant from Seoul Women's University (2010).

