Korean J. Math. 18 (2010), No. 4, pp. 343–356

GENERALIZED FUZZY CONGRUENCES ON SEMIGROUPS

INHEUNG CHON

ABSTRACT. We define a G-fuzzy congruence, which is a generalized fuzzy congruence, discuss some of its basic properties, and characterize the G-fuzzy congruence generated by a fuzzy relation on a semigroup. We also give certain lattice theoretic properties of Gfuzzy congruences on semigroups.

1. Introduction

The concept of a fuzzy relation was first proposed by Zadeh ([7]). Subsequently, Goguen ([1]) and Sanchez ([6]) studied fuzzy relations in various contexts. In [4] Nemitz discussed fuzzy equivalence relations, fuzzy functions as fuzzy relations, and fuzzy partitions. Murali ([3]) developed some properties of fuzzy equivalence relations and certain lattice theoretic properties of fuzzy equivalence relations. The standard definition of a reflexive fuzzy relation μ on a set X, which most mathematicians used in their papers, is $\mu(x, x) = 1$ for all $x \in X$. Gupta et al. ([2]) weakened this standard definition to $\mu(x, x) > 0$ for all $x \in X$ and $\inf_{t \in X} \mu(t,t) \ge \mu(y,z)$ for all $y \ne z \in X$, which is called G-reflexive fuzzy relation, and redefined a G-fuzzy equivalence relation on a set and developed some properties of that relation. Samhan (5) defined a fuzzy congruence based on the standard definition of a reflexive fuzzy relation, found the fuzzy congruence generated by a fuzzy relation on a semigroup, and developed some lattice theoretic properties of fuzzy congruences. The present work has been started as a continuation of these studies.

Received September 6, 2010. Revised November 13, 2010. Accepted November 19, 2010.

²⁰⁰⁰ Mathematics Subject Classification: 03E72.

Key words and phrases: G-fuzzy equivalence relation, G-fuzzy congruence .

This work was supported by a special research grant from Seoul Women's University (2010).

In section 2 we define a generalized fuzzy congruence based on the G-reflexive fuzzy relation, which is called a G-fuzzy congruence in this note, and review some basic properties of fuzzy relations which will be used in next sections. In section 3 we discuss some basic properties of G-fuzzy congruences, find the G-fuzzy congruence generated by a fuzzy relation μ on a semigroup S such that $\mu(x, y) > 0$ for some $x \neq y \in S$, and characterize the G-fuzzy congruence generated by a fuzzy relation μ on a semigroup S such that $\mu(x, y) = 0$ for all $x \neq y \in S$. In section 4 we find sufficient conditions for the composition $\mu \circ \nu$ of two G-fuzzy congruences μ and ν on a semigroup to be the G-fuzzy congruence generated by $\mu \cup \nu$, show that for the collection C(S) of all G-fuzzy congruences on a semigroup S and $0 < k \leq 1$, $C_k(S) = \{\mu \in C(S) : \mu(c, c) = k \text{ for all } c \in S\}$ is a complete lattice and any sublattice H of $C_k(S)$ such that $\mu \circ \nu = \nu \circ \mu$ for all $\mu, \nu \in H$ is modular, and show that if S is a group, $(C_k(S), +, \cdot)$ is modular.

2. Preliminaries

We recall some definitions and properties of fuzzy relations and Gfuzzy congruences which will be used in next sections.

DEFINITION 2.1. A function B from a set X to the closed unit interval [0, 1] in \mathbb{R} is called a *fuzzy set* in X. For every $x \in B$, B(x) is called a *membership grade* of x in B.

The standard definition of a fuzzy reflexive relation μ in a set X demands $\mu(x, x) = 1$. Gupta et al. ([2]) weakened this definition as follows.

DEFINITION 2.2. A fuzzy relation μ in a set X is a fuzzy subset of $X \times X$. μ is *G*-reflexive in X if $\mu(x, x) > 0$ and $\inf_{t \in X} \mu(t, t) \ge \mu(x, y)$ for all $x, y \in X$ such that $x \neq y$. μ is symmetric in X if $\mu(x, y) = \mu(y, x)$ for all x, y in X. The composition $\lambda \circ \mu$ of two fuzzy relations λ, μ in X is the fuzzy subset of $X \times X$ defined by

$$(\lambda \circ \mu)(x,y) = \sup_{z \in X} \min(\lambda(x,z),\mu(z,y)).$$

A fuzzy relation μ in X is transitive in X if $\mu \circ \mu \subseteq \mu$. A fuzzy relation μ in X is called *G*-fuzzy equivalence relation if μ is G-reflexive, symmetric, and transitive.

Let \mathcal{F}_X be the set of all fuzzy relations in a set X. Then it is easy to see that the composition \circ is associative, \mathcal{F}_X is a monoid under the operation of composition \circ , and a G-fuzzy equivalence relation is an idempotent element of \mathcal{F}_X .

DEFINITION 2.3. A fuzzy relation μ in a set X is called *fuzzy left* (right) compatible if $\mu(x, y) \leq \mu(zx, zy)$ ($\mu(x, y) \leq \mu(xz, yz)$) for all $x, y, z \in X$. A G-fuzzy equivalence relation on X is called a G-fuzzy left congruence (right congruence) if it is fuzzy left compatible (right compatible). A G-fuzzy equivalence relation on X is a G-fuzzy congruence if it is a G-fuzzy left and right congruence.

DEFINITION 2.4. Let μ be a fuzzy relation in a set X. μ^{-1} is defined as a fuzzy relation in X by $\mu^{-1}(x, y) = \mu(y, x)$.

It is easy to see that $(\mu \circ \nu)^{-1} = \nu^{-1} \circ \mu^{-1}$ for fuzzy relations μ and ν .

PROPOSITION 2.5. Let μ be a fuzzy relation on a set X. Then $\bigcup_{n=1}^{\infty} \mu^n$ is the smallest transitive fuzzy relation on X containing μ , where $\mu^n = \mu \circ \mu \circ \cdots \circ \mu$.

Proof. See Proposition 2.3 of [5].

PROPOSITION 2.6. Let μ be a fuzzy relation on a set X. If μ is symmetric, then so is $\bigcup_{n=1}^{\infty} \mu^n$, where $\mu^n = \mu \circ \mu \circ \cdots \circ \mu$.

Proof. See Proposition 2.4 of [5].

PROPOSITION 2.7. If μ is a fuzzy relation on a semigroup S that is fuzzy left and right compatible, then so is $\bigcup_{n=1}^{\infty} \mu^n$, where $\mu^n = \mu \circ \mu \circ \cdots \circ \mu$.

Proof. See Proposition 3.6 of [5].

PROPOSITION 2.8. If μ is a G-reflexive fuzzy relation on a set X, then $\mu^{n+1}(x, y) \ge \mu^n(x, y)$ for all natural numbers n and all $x, y \in X$.

Proof. Note that

$$\mu^{2}(x,y) = (\mu \circ \mu)(x,y) = \sup_{z \in X} \min[\mu(x,z), \mu(z,y)]$$

$$\geq \min[\mu(x,x), \mu(x,y)] = \mu(x,y).$$

Suppose $\mu^{k+1}(x,y) \ge \mu^k(x,y)$ for all $x,y \in X$. Then

$$\mu^{k+2}(x,y) = (\mu \circ \mu^{k+1})(x,y) = \sup_{z \in S} \min[\mu(x,z), \ \mu^{k+1}(z,y)]$$

$$\geq \sup_{z \in S} \min[\mu(x,z), \ \mu^{k}(z,y)]$$

$$= (\mu \circ \mu^{k})(x,y) = \mu^{k+1}(x,y).$$

By the mathematical induction, $\mu^{n+1}(x,y) \ge \mu^n(x,y)$ for $n = 1, 2, \dots$

PROPOSITION 2.9. Let μ and each ν_i be fuzzy relations in a set X for all $i \in I$. Then $\mu \circ (\bigcap_{i \in I} \nu_i) \subseteq \bigcap_{i \in I} (\mu \circ \nu_i)$ and $(\bigcap_{i \in I} \nu_i) \circ \mu \subseteq \bigcap_{i \in I} (\nu_i \circ \mu)$. *Proof.* Straightforward.

3. G-fuzzy congruences on semigroups

In this section we develop some basic properties of G-fuzzy congruences and characterize the G-fuzzy congruence generated by a fuzzy relation on a semigroup.

PROPOSITION 3.1. Let μ be a fuzzy relation on a set S. If μ is G-reflexive, then so is $\bigcup_{n=1}^{\infty} \mu^n$, where $\mu^n = \mu \circ \mu \circ \cdots \circ \mu$.

Proof. Clearly $\mu^1 = \mu$ is G-reflexive. Suppose μ^k is G-reflexive.

$$\mu^{k+1}(x,x) = (\mu^k \circ \mu)(x,x) = \sup_{z \in S} \min[\mu^k(x,z), \mu(z,x)]$$

$$\geq \min[\mu^k(x,x), \mu(x,x)] > 0$$

for all $x \in S$. Let $x, y \in S$ with $x \neq y$. Then

$$\begin{split} &\inf_{t\in S} \mu^{k+1}(t,t) = \inf_{t\in S} (\mu^k \circ \mu)(t,t) \\ &= \inf_{t\in S} \sup_{z\in S} \min[\mu^k(t,z),\mu(z,t)] \geq \inf_{t\in S} \min[\mu^k(t,t),\mu(t,t)] \\ &\geq \min[\inf_{t\in S} \mu^k(t,t),\inf_{t\in S}\mu(t,t)] \\ &\geq \min[\mu^k(x,z),\mu(z,y)] \end{split}$$

for all $z \in S$ such that $z \neq x$ and $z \neq y$. That is, $\inf_{t \in S} \mu^{k+1}(t,t) \geq \sup_{z \in S - \{x,y\}} \min[\mu^k(x,z),\mu(z,y)]$. Clearly $\inf_{t \in S} \mu(t,t) \geq \min[\mu^k(x,x),\mu(x,y)]$ and $\inf_{t \in S} \mu^k(t,t) \geq \min[\mu^k(x,y),\mu(y,y)]$. Since $\mu^{k+1}(t,t) \geq \mu^k(t,t) \geq \mu(t,t)$ for $k \geq 1$ by Proposition 2.8,

$$\inf_{t \in S} \mu^{k+1}(t,t) \ge \min \left[\mu^k(x,x), \mu(x,y) \right]$$

and $\inf_{t\in S} \mu^{k+1}(t,t) \ge \min \left[\mu^k(x,y), \mu(y,y)\right]$. Thus

$$\begin{split} \inf_{t \in S} \mu^{k+1}(t,t) &\geq \max \left[\sup_{z \in S - \{x,y\}} \min(\mu^k(x,z), \ \mu(z,y)), \\ \min(\mu^k(x,x), \mu(x,y)), \min(\mu^k(x,y), \mu(y,y)) \right] \\ &= \sup_{z \in S} \min[\mu^k(x,z), \mu(z,y)] = (\mu^k \circ \mu)(x,y) = \mu^{k+1}(x,y). \end{split}$$

That is, μ^{k+1} is G-reflexive. By the mathematical induction, μ^n is G-reflexive for $n = 1, 2, \ldots$. Thus $\inf_{t \in S} [\bigcup_{n=1}^{\infty} \mu^n](t, t) = \inf_{t \in S} \sup[\mu(t, t), (\mu \circ \mu)(t, t), \ldots] \ge \sup[\inf_{t \in S} \mu(t, t), \inf_{t \in S} (\mu \circ \mu)(t, t), \ldots] \ge \sup[\mu(x, y), (\mu \circ \mu)(x, y), \ldots] = [\bigcup_{n=1}^{\infty} \mu^n](x, y)$. Clearly $[\bigcup_{n=1}^{\infty} \mu^n](x, x) > 0$. Hence $\bigcup_{n=1}^{\infty} \mu^n$ is G-reflexive.

PROPOSITION 3.2. Let μ and ν be G-fuzzy congruences in a set X. Then $\mu \cap \nu$ is a G-fuzzy congruence.

Proof. It is clear that $\mu \cap \nu$ is G-reflexive and symmetric. By Proposition 2.9, $[(\mu \cap \nu) \circ (\mu \cap \nu)] \subseteq [\mu \circ (\mu \cap \nu)] \cap [\nu \circ (\mu \cap \nu)] \subseteq [(\mu \circ \mu) \cap (\mu \circ \nu)] \cap [(\nu \circ \mu) \cap (\nu \circ \nu)] \subseteq [\mu \cap (\mu \circ \nu)] \cap [(\nu \circ \mu) \cap \nu] \subseteq \mu \cap \nu$. That is, $\mu \cap \nu$ is transitive. Clearly $\mu \cap \nu$ is fuzzy left and right compatible. Thus $\mu \cap \nu$ is a G-fuzzy congruence.

It is easy to see that even though μ and ν are G-fuzzy congruences, $\mu \cup \nu$ is not necessarily a G-fuzzy congruence. We provide an explicit form of the G-fuzzy congruence generated by $\mu \cup \nu$ in the following proposition.

PROPOSITION 3.3. Let μ and ν be G-fuzzy congruences on a semigroup S. Then the G-fuzzy congruence generated by $\mu \cup \nu$ in S is $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n = (\mu \cup \nu) \cup [(\mu \cup \nu) \circ (\mu \cup \nu)] \cup \ldots$

Proof. Clearly $(\mu \cup \nu)(x, x) > 0$ and

$$\inf_{t \in S} (\mu \cup \nu)(t, t) = \inf_{t \in S} \max(\mu(t, t), \nu(t, t))$$

$$\geq \max (\inf_{t \in S} \mu(t, t), \inf_{t \in S} \nu(t, t))$$

$$\geq \max (\mu(x, y), \nu(x, y))$$

$$= (\mu \cup \nu)(x, y)$$

for all $x \neq y$ in S. That is, $\mu \cup \nu$ is G-reflexive. By Proposition 3.1, $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n$ is G-reflexive. Clearly $\mu \cup \nu$ is symmetric. By Proposition 2.6, $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n$ is symmetric. By Proposition 2.5, $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n$ is transitive. Hence $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n$ is a G-fuzzy equivalence relation containing $\mu \cup \nu$. It is straightforward to see that $\mu \cup \nu$ is fuzzy left and right compatible. By Proposition 2.7, $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n$ is fuzzy left and right compatible. Thus $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n$ is a G-fuzzy congruence containing $\mu \cup \nu$. Let λ be a G-fuzzy congruence in S containing $\mu \cup \nu$. Then $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n \subseteq \bigcup_{n=1}^{\infty} \lambda^n = \lambda \cup (\lambda \circ \lambda) \cup (\lambda \circ \lambda \circ \lambda) \cup \cdots \subseteq \lambda \cup \lambda \cup \cdots = \lambda$. Thus $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n$ is the G-fuzzy congruence generated by $\mu \cup \nu$.

We now turn to the characterization of the G-fuzzy congruence generated by a fuzzy relation on a semigroup.

DEFINITION 3.4. Let μ be a fuzzy relation on a semigroup S and let $S^1 = S \cup \{e\}$, where e is the identity of S. We define the fuzzy relation μ^* on S as

$$\mu^*(c,d) = \bigcup_{\substack{x,y \in S^1, \\ xay = c, \\ xby = d}} \mu(a,b) \text{ for all } c,d \in S.$$

PROPOSITION 3.5. Let μ and ν be two fuzzy relations on a semigroup S. Then

(1) $\mu \subseteq \mu^*$ (2) $(\mu^*)^{-1} = (\mu^{-1})^*$

(3) If μ ⊆ ν, then μ* ⊆ ν*
(4) (μ ∪ ν)* = μ* ∪ ν*
(5) μ = μ* if and only if μ is fuzzy left and right compatible
(6) (μ*)* = μ*

Proof. See Proposition 3.5 of [5].

Samhan ([5]) found the fuzzy congruence generated by a fuzzy relation on a semigroup. Theorem 3.6 may be considered as a generalization of this work in G-fuzzy congruences.

THEOREM 3.6. Let μ be a fuzzy relation on a semigroup S.

- (1) If $\mu(x,y) > 0$ for some $x \neq y \in S$, then the G-fuzzy congruence generated by μ is $\bigcup_{n=1}^{\infty} [\mu^* \cup (\mu^*)^{-1} \cup \theta^*]^n$, where θ is a fuzzy relation on S such that $\theta(z,z) = \sup_{x \neq y \in S} \mu(x,y)$ for all $z \in S$ and $\theta(x,y) = \theta(y,x) \leq \min [\mu(x,y),\mu(y,x)]$ for all $x,y \in S$ with $x \neq y$, and μ^* and θ^* are fuzzy relations on S defined in Definition 3.4.
- (2) If $\mu(x, y) = 0$ for all $x \neq y \in S$ and $\mu(z, z) > 0$ for all $z \in S$, then the G-fuzzy congruence generated by μ is $\bigcup_{n=1}^{\infty} (\mu^*)^n$, where μ^* is a fuzzy relation on S defined in Definition 3.4.
- (3) If $\mu(x,y) = 0$ for all $x \neq y \in S$, $\mu(z,z) = 0$ for some $z \in S$, and $\mu^*(z,z) > 0$ for all $z \in S$, then the G-fuzzy congruence generated by μ is $\bigcup_{n=1}^{\infty} (\mu^*)^n$, where μ^* is a fuzzy relation on S defined in Definition 3.4.
- (4) If $\mu(x, y) = 0$ for all $x \neq y \in S$, $\mu(z, z) = 0$ for some $z \in S$, and $\mu^*(z, z) = 0$ for some $z \in S$, then there does not exist the *G*-fuzzy congruence generated by μ .

Proof. (1) Since $\theta(z, z) > 0$, $\theta^*(z, z) > 0$ for all $z \in S$ by Proposition 3.5 (1). Let $x, y \in S$ with $x \neq y$ and let $S^1 = S \cup \{e\}$, where e is the identity of S. From Definition 3.4, $\mu^*(x, y) = \bigcup_{\substack{c,d \in S^1, \\ cd = x, \\ cd = x,$

 $\theta^*(x,y) = \bigcup_{\substack{c,d \in S^1, \\ cad = x, \\ cbd = y}} \theta(a,b). \text{ Since } cad = x \text{ and } cbd = y \text{ for } c,d \in S^1,$

$$x \neq y$$
 implies $a \neq b$. Thus $\mu^*(x,y) \leq \sup_{x \neq y \in S} \mu(x,y) = \theta(t,t)$ for

349

all $t \in S$ and $\theta^*(x,y) \leq \mu^*(x,y)$. That is, $\inf_{z \in S} \theta^*(z,z) \geq \theta(t,t) \geq \mu^*(x,y) \geq \theta^*(x,y)$. Let $\mu_1 = \mu^* \cup (\mu^*)^{-1} \cup \theta^*$. Then

$$\mu_1(z,z) = \max[\mu^*(z,z),(\mu^*)^{-1}(z,z),\theta^*(z,z)] > 0$$

and

$$\inf_{t \in S} \mu_1(t,t) \ge \inf_{t \in S} \theta^*(t,t) \ge \max[\mu^*(x,y), \ (\mu^*)^{-1}(x,y), \theta^*(x,y)]$$

= $\mu_1(x,y).$

Thus μ_1 is G-reflexive. By Proposition 3.1, $\bigcup_{n=1}^{\infty} \mu_1^n$ is G-reflexive. Since $\theta(x, y) = \theta(y, x), \theta = \theta^{-1}$. By Proposition 3.5 (2), $\theta^* = (\theta^{-1})^* = (\theta^*)^{-1}$. Thus

$$\mu_1(x,y) = \max \left[\mu^*(x,y), (\mu^*)^{-1}(x,y), \theta^*(x,y) \right]$$

= max $\left[(\mu^*)^{-1}(y,x), \mu^*(y,x), (\theta^*)^{-1}(x,y) \right]$
= max $\left[(\mu^*)^{-1}(y,x), \mu^*(y,x), \theta^*(y,x) \right] = \mu_1(y,x).$

Thus μ_1 is symmetric. By Proposition 2.6, $\bigcup_{n=1}^{\infty} \mu_1^n$ is symmetric. By Proposition 2.5, $\bigcup_{n=1}^{\infty} \mu_1^n$ is transitive. Hence $\bigcup_{n=1}^{\infty} \mu_1^n$ is a G-fuzzy equivalence relation containing μ . By Proposition 3.5 (2), (4), and (6), $\mu_1^* = (\mu^* \cup (\mu^*)^{-1} \cup \theta^*)^* = (\mu^* \cup (\mu^{-1})^* \cup \theta^*)^* = (\mu^*)^* \cup ((\mu^{-1})^*)^* \cup ((\mu^{-1})^*)^$ $(\theta^*)^* = \mu^* \cup (\mu^{-1})^* \cup \theta^* = \mu^* \cup (\mu^*)^{-1} \cup \theta^* = \mu_1$. Thus μ_1 is fuzzy left and right compatible by Proposition 3.5 (5). By Proposition 2.7, $\bigcup_{n=1}^{\infty} \mu_1^n$ is fuzzy left and right compatible. Thus $\bigcup_{n=1}^{\infty} \mu_1^n$ is a G-fuzzy congruence containing μ . Let ν be a G-fuzzy congruence containing μ . Then $\mu(x,y) \leq \nu(x,y), \ \mu^{-1}(x,y) = \mu(y,x) \leq \nu(y,x) = \nu(x,y),$ and $\theta(x,y) \leq \mu(x,y) \leq \nu(x,y)$. That is, $(\mu \cup \mu^{-1} \cup \theta)(x,y) \leq \nu(x,y)$ for all $x, y \in S$ such that $x \neq y$. Since $\nu(a, a) \geq \nu(x, y) \geq \mu(x, y)$ for all $a, x, y \in S$ such that $x \neq y$, $\theta(a, a) = \sup_{x \neq y \in S} \mu(x, y) \leq \nu(a, a)$ for all $a \in S$. Since $\nu(a, a) \geq \mu(a, a) = \mu^{-1}(a, a)$ and $\nu(a, a) \geq \theta(a, a)$ for all $a \in S$, max $[\mu(a, a), \mu^{-1}(a, a), \theta(a, a)] \leq \nu(a, a)$ for all $a \in S$. Thus $\mu \cup \mu^{-1} \cup \theta \subseteq \nu$. By Proposition 3.5 (2), (3), and (4), $\mu_1 =$ $\mu^* \cup (\mu^*)^{-1} \cup \theta^* = \mu^* \cup (\mu^{-1})^* \cup \theta^* = (\mu \cup \mu^{-1} \cup \theta)^* \subseteq \nu^*$. Since

Thus $\mu_1 \subseteq \nu$. Suppose $\mu_1^k \subseteq \nu$. Then $\mu_1^{k+1}(b,c) = (\mu_1^k \circ \mu_1)(b,c) = \sup_{d \in S} \min[\mu_1^k(b,d), \mu_1(d,c)] \leq \sup_{d \in S} \min[\nu(b,d), \nu(d,c)] = (\nu \circ \nu)(b,c)$ for all $b, c \in S$. That is, $\mu_1^{k+1} \subseteq (\nu \circ \nu)$. Since ν is transitive, $\mu_1^{k+1} \subseteq \nu$. By the mathematical induction, $\mu_1^n \subseteq \nu$ for every natural number n. Thus $\bigcup_{n=1}^{\infty} [\mu^* \cup (\mu^*)^{-1} \cup \theta^*]^n = \bigcup_{n=1}^{\infty} \mu_1^n = \mu_1 \cup (\mu_1 \circ \mu_1) \cup (\mu_1 \circ \mu_1 \circ \mu_1) \cdots \subseteq \nu$.

(2) Since $\mu(z,z) > 0$, $\mu^*(z,z) > 0$ for all $z \in S$ by Proposition 3.5 (1). Let $x, y \in S$ with $x \neq y$. Since $\mu^*(x,y) \leq \sup_{x \neq y \in S} \mu(x,y)$ and $\mu(x,y) = 0$, $\mu^*(x,y) = 0$. Thus $\inf_{t \in S} \mu^*(t,t) \geq \mu^*(x,y)$. Hence μ^* is G-reflexive. Since $\mu = \mu^{-1}$, $\mu^* = (\mu^{-1})^* = (\mu^*)^{-1}$ by Proposition 3.5 (2). Thus μ^* is symmetric. By Proposition 2.5, Proposition 2.6, and Proposition 3.1, $\bigcup_{n=1}^{\infty} (\mu^*)^n$ is a G-fuzzy equivalence relation containing μ . By Proposition 3.5 (5) and (6), μ^* is fuzzy left and right compatible. By Proposition 2.7, $\bigcup_{n=1}^{\infty} (\mu^*)^n$ is a G-fuzzy congruence containing μ . Let ν be a G-fuzzy congruence containing μ . Since $\mu \subseteq \nu$, $\mu^* \subseteq \nu^*$ by Proposition 3.5 (3). Since ν is fuzzy left and right compatible, $\nu^* = \nu$ by Proposition 3.5 (5). Thus $\mu^* \subseteq \nu$. By the mathematical induction as shown in Theorem 3.6 (1), we may show that $(\mu^*)^n \subseteq \nu$ for every natural number n. Hence $\bigcup_{n=1}^{\infty} (\mu^*)^n = \mu^* \cup (\mu^* \circ \mu^*) \cup (\mu^* \circ \mu^* \circ \mu^*) \cdots \subseteq \nu$. (3) The proof is similar to that of (2).

(4) Suppose ξ is the G-fuzzy congruence generated by μ . Then $\xi(z,z) > 0$ for every $z \in S$. Let θ be a fuzzy relation such that $\theta(a,b) = \frac{\xi(a,b)}{2}$ for all $a, b \in S$. Then $\theta(z,z) > 0$, and hence $\theta^*(z,z) > 0$ for all $z \in S$ by Proposition 3.5 (1). Let $x, y \in S$ with $x \neq y$. Since $\mu^*(x,y) \leq \sup_{x \neq y \in S} \mu(x,y)$ and $\mu(x,y) = 0$, $\mu^*(x,y) = 0$. Since ξ is fuzzy left and right compatible, $\xi^* = \xi$ by Proposition 3.5 (5). Since ξ is G-reflexive and $\xi^* = \xi$, $\inf_{t \in S} \xi^*(t,t) \geq \xi^*(x,y)$. Since $\theta^*(a,b) = \frac{\xi^*(a,b)}{2}$ for all $a, b \in S$, $\inf_{t \in S} \theta^*(t,t) \geq \theta^*(x,y)$. Thus $(\mu^* \cup \theta^*)(z,z) > 0$ for all $z \in S$ and $\inf_{t \in S} (\mu^* \cup \theta^*)(t,t) \geq (\mu^* \cup \theta^*)(x,y)$. That is, $\mu^* \cup \theta^*$ is $\Omega \to 0$ for all $z \in S$ and $\inf_{t \in S} \xi^*(z,t) \geq (\mu^* \cup \theta^*)(x,y)$.

all $z \in S$ and $\inf_{t \in S} (\mu^* \cup \theta^*)(t, t) \ge (\mu^* \cup \theta^*)(x, y)$. That is, $\mu^* \cup \theta^*$ is G-reflexive. Since ξ is symmetric, θ is symmetric. Since θ is symmetric and $\mu(x, y) = 0$, $\mu \cup \theta = (\mu \cup \theta)^{-1}$. By Proposition 3.5 (2), $(\mu \cup \theta)^* = [(\mu \cup \theta)^{-1}]^* = [(\mu \cup \theta)^*]^{-1}$. Thus $(\mu \cup \theta)^* = \mu^* \cup \theta^*$ is symmetric. By Proposition 2.5, Proposition 2.6, and Proposition 3.1, $\bigcup_{n=1}^{\infty} (\mu^* \cup \theta^*)^n$ is a G-fuzzy equivalence relation containing μ . By Proposition 3.5 (4)

and (6), $(\mu^* \cup \theta^*)^* = (\mu^*)^* \cup (\theta^*)^* = \mu^* \cup \theta^*$. Thus $\mu^* \cup \theta^*$ is fuzzy left and right compatible by Proposition 3.5 (5). By Proposition 2.7, $\bigcup_{n=1}^{\infty} (\mu^* \cup \theta^*)^n$ is a G-fuzzy congruence containing μ . Since $\theta(a, b) = \frac{\xi(a,b)}{2} \leq \xi(a,b)$ and $\mu(a,b) \leq \xi(a,b)$ for all $a,b \in S, \ \mu \cup \theta \subseteq \xi$. Let $\mu_1 = \mu^* \cup \theta^*$. By Proposition 3.5 (3) and (4), $\mu_1 = \mu^* \cup \theta^* = (\mu \cup \theta)^* \subseteq \xi^*$. Since $\xi^* = \xi, \ \mu_1 \subseteq \xi$. By the mathematical induction as shown in Theorem 3.6 (1), we may show that $\mu_1^n \subseteq \xi$ for every natural number n. Hence $\bigcup_{n=1}^{\infty} [\mu^* \cup \theta^*]^n = \bigcup_{n=1}^{\infty} \mu_1^n \subseteq \xi$. Let $v \neq w \in S$. Then $\mu_1(v,w) = (\mu^* \cup \theta^*)(v,w) = \theta^*(v,w) \leq \inf_{t \in S} \theta^*(t,t) \leq \mu_1(z,z)$ for every $z \in S$. Suppose $\mu_1^k(v,w) \leq \mu_1(z,z)$ for every $z \in S$. Then $\mu_1^{k+1}(v,w) = \sup_{s \in S} \min [\mu_1^k(v,s), \ \mu_1(s,w)]$

$$= \max \left[\sup_{s \in S - \{v, w\}} \min(\mu_1^k(v, s), \ \mu_1(s, w)), \ \min(\mu_1^k(v, v), \mu_1(v, w)), \\ \min(\mu_1^k(v, w), \mu_1(w, w)) \right]$$

$$\leq \max \left[\mu_1(z,z), \ \mu_1(z,z), \ \mu_1^k(v,w) \right] = \mu_1(z,z).$$

By the mathematical induction, $\mu_1^n(v,w) \leq \mu_1(z,z)$ for every natural number *n*. Clearly $\mu_1^k(z,z) = \mu_1(z,z)$ for k = 1. Suppose $\mu_1^k(z,z) = \mu_1(z,z)$. Since $\mu_1^k(z,s) \leq \mu_1(z,z)$ for $s \neq z \in S$, $\mu_1^{k+1}(z,z) = \sup_{s \in S} \min \left[\mu_1^k(z,s), \ \mu_1(s,z) \right] = \max \left[\sup_{s \in S - \{z\}} \min (\mu_1^k(z,z), \mu_1(z,z)) \right] = \mu_1(z,z)$. By the mathematical induction, $\mu_1^n(z,z) = \mu_1(z,z)$ for every natural number *n* and every $z \in S$. Let *p* be in *S* with $\mu^*(p,p) = 0$. Since $\theta(a,b) = \frac{\xi(a,b)}{2}$ and ξ is fuzzy left and right compatible, θ is fuzzy left and right compatible, θ is fuzzy left and right compatible. That is, $\theta = \theta^*$. Thus $\mu_1(p,p) = \theta^*(p,p) = \theta(p,p) = \frac{\xi(p,p)}{2} < \xi(p,p)$. Since $\mu_1^n(z,z) = \mu_1(z,z)$ for every natural number *n* and every $z \in S$, $[\bigcup_{n=1}^{\infty} (\mu^* \cup \theta^*)^n](p,p) = [\bigcup_{n=1}^{\infty} \mu_1^n](p,p) = \mu_1(p,p) < \xi(p,p)$ for some $p \in S$ such that $\mu^*(p,p) = 0$. Hence $\bigcup_{n=1}^{\infty} (\mu^* \cup \theta^*)^n$, which is a G-fuzzy congruence containing μ , is contained in ξ . This contradicts that ξ is the G-fuzzy congruence generated by μ .

4. Lattices of G-fuzzy congruences

In this section we discuss some lattice theoretic properties of G-fuzzy

congruences. Let C(S) be the collection of all G-fuzzy congruences on a semigroup S. It is easy to see that C(S) is not a lattice.

THEOREM 4.1. Let $0 < k \leq 1$ and let $C_k(S) = \{\mu \in C(S) : \mu(c,c) = k \text{ for all } c \in S\}$. Then $(C_k(S), \leq)$ is a complete lattice, where \leq is a relation on the set of all G-fuzzy congruences on S defined by $\mu \leq \nu$ iff $\mu(x,y) \leq \nu(x,y)$ for all $x, y \in S$.

Proof. Clearly \leq is a partial order relation. It is easy to check that the relation σ defined by $\sigma(x, y) = k$ for all $x, y \in S$ is in $C_k(S)$ and the relation λ defined by $\lambda(x, y) = k$ for x = y and $\lambda(x, y) = 0$ for $x \neq y$ is in $C_k(S)$. Also σ is the greatest element and λ is the least element of $C_k(S)$ with respect to the ordering \leq . Let $\{\mu_j\}_{j\in J}$ be a non-empty collection of G-fuzzy congruences in $C_k(S)$. Let $\mu(x, y) =$ $\inf_{j\in J} \mu_j(x, y)$ for all $x, y \in S$. It is easy to see that $\mu(x, x) > 0$ for all $x \in S$, $\inf_{t\in X} \mu(t, t) \geq \mu(y, z)$ for all $y \neq z \in X$, $\mu = \mu^{-1}$, $\mu(x, y) \leq$ $\mu(zx, zy)$, and $\mu(x, y) \leq \mu(xz, yz)$ for all $x, y, z \in S$. $\mu \circ \mu(x, y) =$ $\sup_{z\in X} \min_{j\in J} \min[\mu_j(x, z), \inf_{j\in J} \mu_j(z, y)] = \sup_{z\in X} \inf_{j\in J} \min[\mu_j(x, z), \mu_i(z, y)] \leq$ $\sup_{z\in X} \inf_{j\in J} \min[\mu_j(x, z), \mu_j(z, y)] \leq \inf_{j\in J} \mu_j \circ \mu_j(x, y) \leq \inf_{j\in J} \mu_j(x, y) =$ $\mu(x, y)$. That is, $\mu \in C_k(S)$. Since μ is the greatest lower bound of $\{\mu_j\}_{j\in J}, (C_k(S), \leq)$ is a complete lattice. \Box

We define addition and multiplication on $C_k(S)$ by $\mu + \nu = \langle \mu \cup \nu \rangle_c$ and $\mu \cdot \nu = \mu \cap \nu$, where $\langle \mu \cup \nu \rangle_c$ is the G-fuzzy congruence generated by $\mu \cup \nu$.

DEFINITION 4.2. A lattice $(L, +, \cdot)$ is called *modular* if $(x+y) \cdot z \le x + (y \cdot z)$ for all $x, y, z \in L$ with $x \le z$.

LEMMA 4.3. Let μ and ν be G-fuzzy congruences on a semigroup S such that

$$\mu(c,c) = \nu(c,c)$$
 for all $c \in S$.

If $\mu \circ \nu = \nu \circ \mu$, then $\mu \circ \nu$ is the G-fuzzy congruence on S generated by $\mu \cup \nu$.

Proof. Clearly $(\mu \circ \nu)(a, a) > 0$ for all $a \in S$. Let $x, y \in S$ with $x \neq y$. Since $\mu(c, c) = \nu(c, c)$ for all $c \in S$, $\inf_{t \in S} \mu(t, t) = \inf_{t \in S} \nu(t, t) \ge 0$

max $[\mu(x, y), \nu(x, y)]$. Thus

$$\begin{split} \inf_{t\in S} \ (\mu\circ\nu)(t,t) &= \inf_{t\in S} \sup_{z\in S} \min \left[\mu(t,z),\nu(z,t)\right] \\ &\geq \inf_{t\in S} \min \left[\mu(t,t),\nu(t,t)\right] \\ &\geq \min \left[\inf_{t\in S} \mu(t,t), \ \inf_{t\in S} \nu(t,t)\right] \\ &\geq \max[\mu(x,y),\nu(x,y)]. \end{split}$$

Also

$$\inf_{t\in S} (\mu\circ\nu)(t,t) \ge \min \left[\inf_{t\in S} \mu(t,t), \inf_{t\in S} \nu(t,t) \right] \ge \min[\mu(x,z), \ \nu(z,y)]$$

for all $z \in S$ such that $z \neq x$ and $z \neq y$. That is,

$$\inf_{t\in S} \ (\mu\circ\nu)(t,t) \ge \sup_{z\in S-\{x,y\}} \ \min \ [\mu(x,z),\nu(z,y)]$$

Thus

$$\begin{split} &\inf_{t\in S} \ (\mu \circ \nu)(t,t) \\ &\geq \max \left[\sup_{z\in S-\{x,y\}} \min(\mu(x,z),\nu(z,y)), \ \max(\mu(x,y), \ \nu(x,y))\right] \\ &= \max \left[\sup_{z\in S-\{x,y\}} \min(\mu(x,z),\nu(z,y)), \ \nu(x,y), \ \mu(x,y)\right] \\ &= \max \left[\sup_{z\in S-\{x,y\}} \min(\mu(x,z),\nu(z,y)), \min(\mu(x,x),\nu(x,y)), \\ \min(\mu(x,y),\nu(y,y))\right] \\ &= \sup_{z\in S} \min[\mu(x,z),\nu(z,y)] = (\mu \circ \nu)(x,y). \end{split}$$

That is, $\mu \circ \nu$ is G-reflexive. Since μ and ν are symmetric, $(\mu \circ \nu)^{-1} = \nu^{-1} \circ \mu^{-1} = \nu \circ \mu = \mu \circ \nu$. Thus $\mu \circ \nu$ is symmetric. Since μ and ν are transitive and the operation \circ is associative, $(\mu \circ \nu) \circ (\mu \circ \nu) = \mu \circ (\nu \circ \mu) \circ \nu = \mu \circ (\mu \circ \nu) \circ \nu = (\mu \circ \mu) \circ (\nu \circ \nu) \subseteq \mu \circ \nu$. Hence $\mu \circ \nu$ is a G-fuzzy equivalence relation. Since S is a semigroup, $(\mu \circ \nu)(x, y) = \sup_{a \in S} \min[\mu(x, a), \nu(a, y)] \leq \sup_{za \in S} \min[\mu(zx, za), \nu(za, zy)] \leq \sup_{t \in S} \min[\mu(zx, t), \nu(t, zy)] = (\mu \circ \nu)(zx, zy)$. Thus $\mu \circ \nu$ is fuzzy left compatible. Similarly we may show $\mu \circ \nu$ is fuzzy right compatible. Hence

$$\begin{split} & \mu \circ \nu \text{ is a G-fuzzy congruence in } S. \text{ Since } \nu(y,y) = \mu(y,y) \geq \mu(x,y), (\mu \circ \nu)(x,y) = \sup_{z \in S} \min[\mu(x,z),\nu(z,y)] \geq \min(\mu(x,y),\nu(y,y)) = \mu(x,y).\\ & \text{Since } \mu(x,x) = \nu(x,x) \geq \nu(x,y), (\mu \circ \nu)(x,y) = \sup_{z \in S} \min[\mu(x,z),\nu(z,y)] \geq \min(\mu(x,x),\nu(x,y)) = \nu(x,y). \end{split}$$

Thus $(\mu \circ \nu)(x, y) \geq \max(\mu(x, y), \nu(x, y)) = (\mu \cup \nu)(x, y)$ for all $x, y \in S$ such that $x \neq y$. Since $\mu(c, c) = \nu(c, c)$ for all $c \in S$, $(\mu \circ \nu)(c, c) = \sup_{p \in S} \min[\mu(c, p), \nu(p, c)] \geq \min(\mu(c, c), \nu(c, c)) = (\mu \cup \nu)(c, c)$ for all $c \in S$. Thus $\mu \cup \nu \subseteq \mu \circ \nu$. Let λ be a G-fuzzy congruence in S containing $\mu \cup \nu$. Since λ is transitive, $\mu \circ \nu \subseteq (\mu \cup \nu) \circ (\mu \cup \nu) \subseteq \lambda \circ \lambda \subseteq \lambda$. Thus $\mu \circ \nu$ is the G-fuzzy congruence generated by $\mu \cup \nu$.

It is well known that if μ and ν are congruences on a semigroup S and $\mu \circ \nu = \nu \circ \mu$, then $\mu \circ \nu$ is the congruence on S generated by $\mu \cup \nu$. Lemma 4.3 may be considered as a generalization of this in G-fuzzy congruences.

THEOREM 4.4. Let $0 < k \leq 1$ and let S be a semigroup and H be a sublattice of $(C_k(S), +, \cdot)$ such that $\mu \circ \nu = \nu \circ \mu$ for all $\mu, \nu \in H$. Then H is a modular lattice.

Proof. Let $\mu, \nu, \rho \in H$ with $\mu \leq \rho$. Let $x, y \in S$.

$$\min[(\mu \circ \nu)(x, y), \rho(x, y)] = \sup_{z \in S} \min \left[\mu(x, z), \nu(z, y), \rho(x, y)\right]$$
$$\leq \sup_{z \in S} \min[\mu(x, z), \rho(x, z), \nu(z, y), \rho(x, y)]$$
$$\leq \sup_{z \in S} \min[\mu(x, z), \nu(z, y), \rho(z, y)]$$
$$= [\mu \circ \min(\nu, \rho)](x, y).$$

Thus $(\mu \circ \nu) \cdot \rho \leq \mu \circ (\nu \cdot \rho)$. Since $\mu, \nu \in C_k(S), \mu(c, c) = \nu(c, c) = k$ for all $c \in S$. By Lemma 4.3, $\mu \circ \nu$ is the G-fuzzy congruence generated by $\mu \cup \nu$. That is, $\mu + \nu = \mu \circ \nu$. Similarly we may show $\mu + (\nu \cdot \rho) = \mu \circ (\nu \cdot \rho)$. Thus $(\mu + \nu) \cdot \rho \leq \mu + (\nu \cdot \rho)$. Hence H is modular. \Box

PROPOSITION 4.5. If S is a group, then $\mu \circ \nu = \nu \circ \mu$ for all $\mu, \nu \in C_k(S)$.

Proof. Straightforward.

COROLLARY 4.6. If S is a group and $0 < k \leq 1$, then $(C_k(S), +, \cdot)$ is modular.

Proof. By Theorem 4.4 and Proposition 4.5, $(C_k(S), +, \cdot)$ is modular.

References

- [1] J. A. Goguen, *L-fuzzy sets*, J. Math. Anal. Appl. 18 (1967), 145–174.
- [2] K. C. Gupta and R. K. Gupta, Fuzzy equivalence relation redefined, Fuzzy Sets and Systems 79 (1996), 227–233.
- [3] V. Murali, Fuzzy equivalence relation, Fuzzy Sets and Systems 30 (1989), 155– 163.
- [4] C. Nemitz, Fuzzy relations and fuzzy function, Fuzzy Sets and Systems 19 (1986), 177–191.
- [5] M. Samhan, Fuzzy congruences on semigroups, Inform. Sci. 74 (1993), 165–175.
- [6] E. Sanchez, Resolution of composite fuzzy relation equation, Inform. and Control 30 (1976), 38–48.
- [7] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338–353.

Department of Mathematics Seoul Women's University 126 Kongnung 2-Dong, Nowon-Gu Seoul 139-774, South Korea *E-mail*: ihchon@swu.ac.kr

356