REMARKS ON LOCALLY HALF-FACTORIAL DOMAINS

Seok Ryong Yoon

Abstract

In this paper, we study Dedekind domains D such that each proper localization D_{S} of D is an half-factorial domain.

1. Introduction

Let D be an integral domain. As in [5], we say that a saturated multiplicative set S of D is a splitting multiplicative set if for each nonzero $d \in D, d=s a$ for some $s \in S$ and $a \in D$ with $s^{\prime} D \bigcap a D=$ $s^{\prime} a D$ for all $s^{\prime} \in S$. Then $T=\{0 \neq t \in D \mid s D \bigcap t D=s t D$ for all $s \in S\}$ is also a splitting multiplicative set, $S T=D-\{0\}$, and $S \bigcap T=U(D)$, where $U(D)$ is the group of units of D. We call T the m-complement set for S. We say that a saturated multiplicative set $S \neq U(D)$ is a GCD-set if each pair of elements $a, b \in S$ has a $\operatorname{gcd}(a, b)$ in D (and hence in S). Thus D^{*} is a GCD-set if and only if D is a GCD-domain(recall that D is a GCD-domain if any two elements of D have a GCD in D, or equivalently, the intersection of any two principal ideals of D is principal).

An integral domain D is atomic if each nonzero nonunit of D is a product of irreducible elements. Following Zaks [13], we define D to be a half-factorial domain (HFD) if D is atomic and for any irreducible elements $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}$ of D with $x_{1} \cdots x_{m}=y_{1} \cdots y_{n}$, then $m=$ n. Following Valenza [12], [8], we define the elasticity of an atomic integral domain D as

$$
\rho(D)=\sup \left\{\left.\frac{m}{n} \right\rvert\, x_{1} \cdots x_{m}=y_{1} \cdots y_{n} \text { for irreducible } x_{i}, y_{j} \in D\right\}
$$

[^0](Define $\rho(D)=1$ if D is a field.) Notice that $1 \leq \rho(D) \leq \infty$, and $\rho(D)=1$ if and only if D is an HFD. Thus $\rho(D)$ measures how far D is from being an HFD.

Throughout, we will assume that D is a Dedekind domain with $\mathcal{C l}(D)$ its divisor class group, $[I]$ the ideal class of I in $\mathcal{C l}(D), U(D)$ its group of units, D^{*} its set of nonzero elements, $S \subseteq D^{*}$ a multiplicative subset of $D, X^{(1)}(D)$ its set of nonzero (maximal) prime ideals, and $\mathcal{I}(D)$ its set of irreducible elements. A multiplicative set S is generated by $C \subseteq D^{*}$, and written $\langle C\rangle$, if $S=\left\{u c_{1} \cdots c_{n} \mid u \in U(D)\right.$, each $c_{i} \in$ $C, n \geq 1\}$. For a group G and $C \subseteq G$, we also denote by $\langle C\rangle$ the subgroup of G generated by C. To avoid trivialities, we will assume that D is not a UFD (PID), i.e., $\mathcal{C l}(D) \neq\{0\}$. For general references on factorization in integral domains, see [5].

If for a given abelian group G and subset $\mathcal{A} \subseteq G-\{0\}$ there exists a Dedekind domain D such that $\mathcal{C l}(D)=G$ and $\mathcal{A}=\{[P] \mid P$ is prime ideal of D and $[P] \neq 0\}$, then the pair $\{G, \mathcal{A}\}$ is called realizable [11], [10]. For D a Dedekind domain with realizable pair $\{\mathcal{C l}(D), \mathcal{A}\}$ and S a saturated multiplicative subset of D, set $\mathcal{A}[S]=\{[P] \mid P \cap S \neq \emptyset\} \subseteq \mathcal{A}$. Let $G[S]$ be the subgroup of $\mathcal{C l}(D)$ generated by $\mathcal{A}[S]$. It is possible that $\mathcal{A}[S]=\emptyset$ (for example, if S is generated by principal primes, or if $S=U(D)$. Note that $\mathcal{A}[S]=\emptyset$ if and only if $G[S]=\{0\}$. By Nagata's Theorem [9, Corollary 7.2], $G[S]=\operatorname{ker} \varphi$, where $\varphi: \mathcal{C l}(D) \rightarrow \mathcal{C l}\left(D_{S}\right)$ is the natural homomorphism.

If P is a prime ideal of a Dedekind domain D with $|[P]|<\infty$, then set $S[P]=\left\{x \in D^{*} \mid x D=P_{1} P_{2} \cdots P_{n}\right.$ with each $\left.P_{i} \in[P]\right\} \cup U(D)$.

2. Main results

An integral domain D is said to be a locally half-factorial domain (LHFD) if each localization D_{S} of D (including D itself) is an HFD [6]. Any direct sum of cyclic groups is the divisor class group of a Dedekind LHFD[6, Example 4]. In [1], an integral domain D is said to be locally factorial if $D_{f}=D[1 / f]$ is factorial (a UFD) for each nonzero nonunit $f \in D$. An integral domain D is said to be a proper locally half-factorial domain (PLHFD)[7] if every proper localization of D is an HFD. Thus any locally factorial domain is obviously a PLHFD.

For future reference, we include a result from[7, Theorem 2.4].

Theorem 2.1. Let D be a Dedekind domain such that every nonzero ideal class of D contains a prime ideal.
(1) If D contains a principal prime, then D is a PLHFD if and only if $\mathrm{Cl}(\mathrm{D})$ is either $\{0\}$ or Z_{2}
(2) If D contains no principal primes, then D is a PLHFD if and only if $C l(D)$ is either $Z_{2} \bigoplus Z_{2}, Z_{4}$, or Z_{p}, p a prime

Proof. (1) If every nonzero ideal class of a Dedekind domain D contains a prime ideal, then the same holds true for any localization of D. Also, a Dedekind domain D with the property that each nonzero ideal class contains a prime ideal is an HFD if and only if $|\mathcal{C l}(D)| \leq 2$. (2) [7, Theorem 2.7].

Let G be an abelian group. The Davenport constant of G, denoted by $D(G)$, is the least positive integer d such that for each sequence $S \subseteq G$ with $|S|=d$, some nonempty subsequence of S has sum 0 . In general, there is no known formula for $D(G)$. However, $D\left(Z_{n}\right)=n$, and if p is prime and $G=Z_{p^{n_{1}}} \bigoplus \cdots \bigoplus Z_{p^{n_{r}}}$, then $D(G)=1+\sum_{i=1}^{r}\left(p^{n_{i}}-1\right)$.

Let D be an atomic integral domain with $\rho(D)$ a rational number. We say that $\rho(D)$ is realized by a factorization if there is a factorization $r_{1} \cdots r_{n}=t_{1} \cdots t_{m}$ with each $r_{i}, t_{j} \in D$ irreducible such that $\rho(D)=$ m / n. If D is a Krull domain with finite divisor class group, then $\rho(D)$ is realized by a factorization [3, Theorem 10]. Next, we show that if D is a PLHFD with $\mathcal{C l}(D)$ noncyclic, then $\rho(D)$ is realized by a factorization by the computation of ideal classes of $\mathcal{C l}(D)$ directly.

Theorem 2.2. Let D be a Dedekind domain such that every nonzero ideal class of D contains a prime ideal. If D contains no principal primes and D is a PLHFD with $\mathcal{C l}(D)$ noncyclic, then
(1) $\rho(D)=3 / 2$,
(2) $\rho(D)$ is realized by a factorization.

Proof. (1) Since $\mathcal{C l}(D)$ is noncyclic by Theorem 2.1, $\mathcal{C l}(D)=Z_{2} \bigoplus Z_{2}$. Note that the Davenport constant of $Z_{2} \bigoplus Z_{2}, D\left(Z_{2} \bigoplus Z_{2}\right)=1+(2-$ 1) $+(2-1)=3$. Thus $\rho(R)=D\left(Z_{2} \bigoplus Z_{2}\right) / 2=3 / 2$ [2, Corollary 2.3(b)].
(2) Now, let P_{1}, P_{2}, and P_{3} be prime ideals of D such that $\left[P_{1}\right]=$ $(1,0),\left[P_{2}\right]=(0,1)$ and $\left[P_{3}\right]=(1,1)$. Let x, y, z and w be irreducible
elements of D such that $x D=P_{1}^{2}, y D=P_{2}^{2}, z D=P_{3}^{2}$, and $w D=$ $P_{1} P_{2} P_{3}$. Then $w^{2} D=x y z D$. Hence $\rho(D)$ is realized by a factorization.

Let G be an abelian group and $A \subseteq G . A$ is called an independent set in G if $n_{1} a_{1}+\cdots+n_{k} a_{k}=0, n_{i} \in Z$, distinct $a_{i} \in A$, implies that each $n_{i} a_{i}=0$.

Example 2.3.
(1) Let R be a Dedekind domain with class group $\mathcal{C l}(R)$ and let $D=R_{S}$, where S is the multiplicative set generated by the principal primes of R. Then $\mathcal{C l}(D)=\mathcal{C l}(R)$ by Nagata's Theorem, and D has no principal primes.
(2) Let D be a Dedekind domain such that every nonzero ideal class of D contains a prime ideal. Suppose that D has no principal primes. If $\mathcal{C l}(D)=Z_{2} \bigoplus Z_{2}$, then since D is not an HFD, D has no nontrivial splitting sets and $\{(1,0),(0,1),(1,1)\} \subset \mathcal{C l}(D)$ is not an independent set. On the other hand, if $\mathcal{C l}(D)=Z_{3}$, then $\rho(D)=D\left(Z_{3}\right) / 2=3 / 2$. Also, let P_{1}, P_{2} be prime ideals of D such that $\left[P_{1}\right]=1$ and $\left[P_{2}\right]=2$. Let x, y be irreducible elements of D such that $x D=P_{1}^{3}, y D=P_{2}^{3}$ and $z D=P_{1} P_{2}$. Then $z^{3} D=x y D$. Hence $\rho(D)$ is realized by a factorization.
(3) Let D be as in Theorem 2.1 and let S be a splitting multiplicative set with T the m-complement for S. If $\mathcal{C l}(D) \neq Z_{2} \oplus Z_{2}$, then $\mathcal{C l}(D)$ is indecomposable and so we may assume that $G[T]=\{0\}$. Thus $T=U(D)$; so D has no nontrivial splitting multiplicative sets.

Example 2.4.
(1) Let $G=Z_{4}$. For $C=\{2,3\}$, we denote that $\left\{H_{i}\right\}$ is the family of subgroups of G generated by subsets of C. Then $\left\{G / H_{i}\right\}=\left\{Z_{2},\{0\}\right\}$. Then there exists a Dedekind domain D such that $\mathcal{C l}(D)=G$ and the set of divisor class groups of overrings of D is $\left\{Z_{2},\{0\}\right\}$ (and hence D is a PLHFD)(such a Dedekind domain exists by [11, Theorem 2.3]). If there exists a nontrivial splitting multiplicative set of D, then $\mathcal{C l}(D) \simeq \mathcal{C l}\left(D_{S}\right) \bigoplus \mathcal{C l}\left(D_{T}\right)$ given by $[I] \rightarrow\left(\left[I D_{S}\right],\left[I D_{T}\right]\right)$, where T is the m-complement for S. Since $\mathcal{C l}(D)=Z_{4}$, we may assume that $\mathcal{C l}\left(D_{T}\right)=\{0\}$. Hence D_{T} is a UFD; S is generated by prime elements
of D and $\mathcal{C l}(D) \simeq \mathcal{C l}\left(D_{S}\right)$, but $\mathcal{C l}(D)=Z_{4}$ and $\mathcal{C l}\left(D_{S}\right)=Z_{2}$ or $\{0\}$, a contradiction. Hence D^{*} and $U(D)$ are the only splitting multiplicative sets of D.
(2) As in (1), let $G=Z_{p}, p$ a prime and let $C=\{1,2, \ldots, p-2\}$. Let $\left\{H_{i}\right\}$ be the family of subgroups of G generated by subsets of C. Then $\left\{G / H_{i}\right\}=\{0\}$. Then there exists a Dedekind domain D such that $\mathcal{C l}(D)=G$ and the set of divisor class groups of overrings of D is $\{0\}$ (and hence D is a LHFD)(such a Dedekind domain exists by [11, Theorem 2.3]). Suppose that there exists a splitting multiplicative set S of D with $S \neq D^{*}, U(D)$. By the observation in (1), we have $\mathcal{C l}(D) \simeq \mathcal{C l}\left(D_{S}\right)$, a contradiction.

Let D be a Dedekind domain with divisor class group G. In [10], let $\Delta(g) \in\{0,1,2, \ldots\} \cup\{\infty\}$ denote the number of prime ideals of D in the class $g \in G$. Let G be a finitely generated torsion abelian group generated by \mathcal{A} as a monoid. If $\mathcal{A}=\mathcal{B} \cup \mathcal{C}$ is a partition of \mathcal{A} such that $\mathcal{B}^{\prime} \cup \mathcal{C}$ generates G as a monoid for each cofinite subset \mathcal{B}^{\prime} of \mathcal{B}, then there exists a Dedekind domain D such that $\{G, \mathcal{A}\}$ is realizable, $\Delta(b)=1$ for each $b \in \mathcal{B}$ and $\Delta(c)=\infty[10$, Theorem 8].

Theorem 2.5. Let D be a Dedekind domain such that every nonzero ideal class of D contains a prime ideal and D contains no principal primes. If D is a PLHFD but not an HFD such that $[P] \in \mathcal{C l}(D)$ has exactly one prime ideal of D for some P, then
(1) $S[P]$ is a GCD-set and $\mathcal{H}_{[P]}$ is not an HF-set;
(2) Each $x \in S[P] \cap \mathcal{I}(D)$ is P-primary.
(3) $S[P]$ is not a splitting multiplicative set.

Proof. (1), (2) Since D is a PLHFD and $[P]$ contains exactly one prime ideal with $|[P]|<\infty, S[P]$ is a GCD-set and each $X \in S[P] \bigcap \mathcal{I}(D)$ is P-primary [4, Theorem 3.2].
(3) Since D is not an HFD; so D has no nontrivial multiplicative sets. But, if $S[P]=D^{*}$ is trivial, then D is an atomic GCD-domain. Thus D is a UFD. Hence $S[P]$ is not a splitting multiplicative set.

We conclude this paper with some more examples.

Example 2.6.

(1) As in Example 2.4, we can not construct D with $\mathcal{C l}(D)=Z_{2}$ such that $S[P]$ is a GCD-set by partition method. Let R be a Dedekind
domain with divisor class group $\mathcal{C l}(R)=Z_{2}$. Let T be the multiplicative set generated by all principal primes of R. Then $D=R_{T}$ has no principal primes and $\mathcal{C l}(D)=\mathcal{C l}(R)=Z_{2}$. Thus $D^{*}=S[P]$ for each nonprincipal prime P of D. If $S[P]=D^{*}$ is a $G C D$-set, then D is an atomic GCD-domain. Hence D ia s UFD.
(2) As in Theorem 2.1, there exist a PLHFD D such that D has no principal primes, $\mathcal{C l}(D)=Z_{p}, p \geq 3$ such that $\Delta(1)=1, \Delta(2)=\infty$. Then $S[P]$ is a $G C D$-set, where $[P]=1$.

References

[1] D.D. Anderson and D.F. Anderson, Locally factorial integral domains, J. algebra 90 (1984), 265-283.
[2] D.D. Anderson and D.F. Anderson, Elasticity of factorization in integral domains, J. Pure Appl. Algebra 80 (1992), 217-235.
[3] D.D. Anderson, D.F. Anderson, S. Chapman, and W.W. Smith, Rational elasticity of factorizations in Krull domains, Proc. Amer. Math. Soc. 117 (1993), 37-43.
[4] D.D. Anderson, D.F. Anderson, and J. Park, GCD-sets in integral domains, Houston J. Math. 25 (1999), 15-34.
[5] D.D. Anderson, D.F. Anderson, and M. Zafrullah, Factorization in integral domains, II, J. Algebra 152 (1992), 78-93.
[6] D.F. Anderson, S. Chapman, and W.W. Smith, Overring of half-factorial domains, Canad. Math. Bull. 37 (1994), 437-442.
[7] D.F. Anderson and J. Park, Locally half-factorial domains, Houston J. Math. 23 (1997), 617-630.
[8] D.F. Anderson, J. Park, G. Kim, and H. Oh, Splitting multiplicative sets and elasticity, Comm. Algebra 26 (1998), 1257-1276.
[9] R.M. Fossum, The Divisor Class Group of a Krull Domain, Springer, New York, 1973.
[10] R. Gilmer, W. Heinzer, and W.W. Smith, On the distribution of prime ideals within the ideal class group, Houston J. Math. 22 (1996), 51-59.
[11] A. Grams, The distribution of prime ideals of a Dedekind domain, Bull. Austral. Math. Soc. 11 (1974), 429-441.
[12] R.J. Valenza, Elasticity of factorization in number fields, J. Number Theory 36 (1990), 212-218.
[13] A. Zaks, Half-factorial domains, Israel J. Math. 37 (1980), 218-302.
Department of Mathematics
Inha University
Incheon 402-751 Korea
E-mail: drys1018@inha.ac.kr

[^0]: Received October 7, 2010. Revised November 12, 2010. Accepted November 19, 2010.

 2000 Mathematics Subject Classification: 13G05.
 Key words and phrases: Dedekind domain, divisor class group, elasticity.

