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REMARKS ON LOCALLY
HALF-FACTORIAL DOMAINS

Seok Ryong Yoon

Abstract. In this paper, we study Dedekind domains D such that
each proper localization DS of D is an half-factorial domain.

1. Introduction

Let D be an integral domain. As in [5], we say that a saturated
multiplicative set S of D is a splitting multiplicative set if for each
nonzero d ∈ D, d = sa for some s ∈ S and a ∈ D with s′D

⋂
aD =

s′aD for all s′ ∈ S. Then T = {0 6= t ∈ D|sD ⋂
tD = stD for all s ∈ S}

is also a splitting multiplicative set, ST = D−{0}, and S
⋂

T = U(D),
where U(D) is the group of units of D. We call T the m-complement
set for S. We say that a saturated multiplicative set S 6= U(D) is a
GCD-set if each pair of elements a, b ∈ S has a gcd(a, b) in D (and
hence in S). Thus D∗ is a GCD-set if and only if D is a GCD-domain(
recall that D is a GCD-domain if any two elements of D have a GCD
in D, or equivalently, the intersection of any two principal ideals of D
is principal).

An integral domain D is atomic if each nonzero nonunit of D is a
product of irreducible elements. Following Zaks [13], we define D to be
a half-factorial domain (HFD) if D is atomic and for any irreducible
elements x1, ..., xm, y1, ..., yn of D with x1 · · ·xm = y1 · · · yn, then m =
n. Following Valenza [12], [8], we define the elasticity of an atomic
integral domain D as

ρ(D) = sup{ m

n
|x1 · · ·xm = y1 · · · yn for irreducible xi, yj ∈ D}.
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(Define ρ(D) = 1 if D is a field.) Notice that 1 ≤ ρ(D) ≤ ∞, and
ρ(D) = 1 if and only if D is an HFD. Thus ρ(D) measures how far D
is from being an HFD.

Throughout, we will assume that D is a Dedekind domain with
Cl(D) its divisor class group, [I] the ideal class of I in Cl(D), U(D) its
group of units, D∗ its set of nonzero elements, S ⊆ D∗ a multiplicative
subset of D, X(1)(D) its set of nonzero (maximal) prime ideals, and
I(D) its set of irreducible elements. A multiplicative set S is generated
by C ⊆ D∗, and written 〈C〉, if S = {uc1 · · · cn|u ∈ U(D), each ci ∈
C, n ≥ 1}. For a group G and C ⊆ G, we also denote by 〈C〉 the
subgroup of G generated by C. To avoid trivialities, we will assume
that D is not a UFD (PID), i.e., Cl(D) 6= {0}. For general references
on factorization in integral domains, see [5].

If for a given abelian group G and subset A ⊆ G− {0} there exists
a Dedekind domain D such that Cl(D) = G and A = {[P ]|P is prime
ideal of D and [P ] 6= 0}, then the pair {G,A} is called realizable [11],
[10]. For D a Dedekind domain with realizable pair {Cl(D),A} and S a
saturated multiplicative subset of D, set A[S] = {[P ] |P ∩S 6= ∅} ⊆ A.
Let G[S] be the subgroup of Cl(D) generated by A[S]. It is possible
that A[S] = ∅ (for example, if S is generated by principal primes, or if
S = U(D)). Note that A[S] = ∅ if and only if G[S] = {0}. By Nagata’s
Theorem [9, Corollary 7.2], G[S] = ker ϕ, where ϕ : Cl(D) → Cl(DS)
is the natural homomorphism.

If P is a prime ideal of a Dedekind domain D with |[P ]| < ∞, then
set S[P ] = {x ∈ D∗|xD = P1P2 · · ·Pn with each Pi ∈ [P ]} ∪ U(D).

2. Main results

An integral domain D is said to be a locally half-factorial domain
(LHFD) if each localization DS of D (including D itself) is an HFD
[6]. Any direct sum of cyclic groups is the divisor class group of a
Dedekind LHFD[6, Example 4]. In [1], an integral domain D is said to
be locally factorial if Df = D[1/f ] is factorial (a UFD) for each nonzero
nonunit f ∈ D. An integral domain D is said to be a proper locally
half-factorial domain (PLHFD)[7] if every proper localization of D is
an HFD. Thus any locally factorial domain is obviously a PLHFD.

For future reference, we include a result from[7, Theorem 2.4].
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Theorem 2.1. Let D be a Dedekind domain such that every nonzero
ideal class of D contains a prime ideal.

(1) If D contains a principal prime, then D is a PLHFD if and only
if Cl(D) is either {0} or Z2

(2) If D contains no principal primes, then D is a PLHFD if and
only if Cl(D) is either Z2

⊕
Z2, Z4, or Zp, p a prime

Proof. (1) If every nonzero ideal class of a Dedekind domain D
contains a prime ideal, then the same holds true for any localization of
D. Also, a Dedekind domain D with the property that each nonzero
ideal class contains a prime ideal is an HFD if and only if |Cl(D)| ≤ 2.
(2) [7, Theorem 2.7]. ¤

Let G be an abelian group. The Davenport constant of G, denoted by
D(G), is the least positive integer d such that for each sequence S ⊆ G
with |S| = d, some nonempty subsequence of S has sum 0. In general,
there is no known formula for D(G). However, D(Zn) = n, and if p is
prime and G = Zpn1

⊕ · · ·⊕ Zpnr , then D(G) = 1 +
∑r

i=1(p
ni − 1).

Let D be an atomic integral domain with ρ(D) a rational number.
We say that ρ(D) is realized by a factorization if there is a factorization
r1 · · · rn = t1 · · · tm with each ri, tj ∈ D irreducible such that ρ(D) =
m/n. If D is a Krull domain with finite divisor class group, then ρ(D)
is realized by a factorization [3, Theorem 10]. Next, we show that
if D is a PLHFD with Cl(D) noncyclic, then ρ(D) is realized by a
factorization by the computation of ideal classes of Cl(D) directly.

Theorem 2.2. Let D be a Dedekind domain such that every nonzero
ideal class of D contains a prime ideal. If D contains no principal
primes and D is a PLHFD with Cl(D) noncyclic, then

(1) ρ(D) = 3/2,
(2) ρ(D) is realized by a factorization.

Proof. (1) Since Cl(D) is noncyclic by Theorem 2.1, Cl(D) = Z2

⊕
Z2.

Note that the Davenport constant of Z2

⊕
Z2, D(Z2

⊕
Z2) = 1+(2−

1) + (2 − 1) = 3. Thus ρ(R) = D(Z2

⊕
Z2)/2 = 3/2 [2, Corollary

2.3(b)].
(2) Now, let P1, P2, and P3 be prime ideals of D such that [P1] =

(1, 0), [P2] = (0, 1) and [P3] = (1, 1). Let x, y, z and w be irreducible
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elements of D such that xD = P 2
1 , yD = P 2

2 , zD = P 2
3 , and wD =

P1P2P3. Then w2D = xyzD. Hence ρ(D) is realized by a factorization.
¤

Let G be an abelian group and A ⊆ G. A is called an independent
set in G if n1a1 + · · ·+ nkak = 0, ni ∈ Z, distinct ai ∈ A, implies that
each niai = 0.

Example 2.3.

(1) Let R be a Dedekind domain with class group Cl(R) and let
D = RS , where S is the multiplicative set generated by the
principal primes of R. Then Cl(D) = Cl(R) by Nagata’s Theo-
rem, and D has no principal primes.

(2) Let D be a Dedekind domain such that every nonzero ideal class
of D contains a prime ideal. Suppose that D has no principal
primes. If Cl(D) = Z2

⊕
Z2, then since D is not an HFD, D has

no nontrivial splitting sets and {(1, 0), (0, 1), (1, 1)} ⊂ Cl(D) is
not an independent set. On the other hand, if Cl(D) = Z3,
then ρ(D) = D(Z3)/2 = 3/2. Also, let P1, P2 be prime ideals
of D such that [P1] = 1 and [P2] = 2. Let x, y be irreducible
elements of D such that xD = P 3

1 , yD = P 3
2 and zD = P1P2.

Then z3D = xyD. Hence ρ(D) is realized by a factorization.
(3) Let D be as in Theorem 2.1 and let S be a splitting multiplica-

tive set with T the m−complement for S. If Cl(D) 6= Z2

⊕
Z2,

then Cl(D) is indecomposable and so we may assume that
G[T ] = {0}. Thus T = U(D); so D has no nontrivial split-
ting multiplicative sets.

Example 2.4.
(1) Let G = Z4. For C = {2, 3}, we denote that {Hi} is the family of

subgroups of G generated by subsets of C. Then {G/Hi} = {Z2, {0}}.
Then there exists a Dedekind domain D such that Cl(D) = G and
the set of divisor class groups of overrings of D is {Z2, {0}} (and
hence D is a PLHFD)(such a Dedekind domain exists by [11, The-
orem 2.3]). If there exists a nontrivial splitting multiplicative set of D,
then Cl(D) ' Cl(DS)

⊕ Cl(DT ) given by [I] → ([IDS ], [IDT ]), where
T is the m−complement for S. Since Cl(D) = Z4, we may assume that
Cl(DT ) = {0}. Hence DT is a UFD; S is generated by prime elements
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of D and Cl(D) ' Cl(DS), but Cl(D) = Z4 and Cl(DS) = Z2 or {0}, a
contradiction. Hence D∗ and U(D) are the only splitting multiplicative
sets of D.

(2) As in (1), let G = Zp, p a prime and let C = {1, 2, ..., p − 2}.
Let {Hi} be the family of subgroups of G generated by subsets of C.
Then {G/Hi} = {0}. Then there exists a Dedekind domain D such
that Cl(D) = G and the set of divisor class groups of overrings of D
is {0} (and hence D is a LHFD)(such a Dedekind domain exists by
[11, Theorem 2.3]). Suppose that there exists a splitting multiplicative
set S of D with S 6= D∗, U(D). By the observation in (1), we have
Cl(D) ' Cl(DS), a contradiction.

Let D be a Dedekind domain with divisor class group G. In [10],
let ∆(g) ∈ {0, 1, 2, ...} ∪ {∞} denote the number of prime ideals of D
in the class g ∈ G. Let G be a finitely generated torsion abelian group
generated by A as a monoid. If A = B ∪ C is a partition of A such
that B′ ∪ C generates G as a monoid for each cofinite subset B′ of B,
then there exists a Dedekind domain D such that {G,A} is realizable,
∆(b) = 1 for each b ∈ B and ∆(c) = ∞ [10, Theorem 8].

Theorem 2.5. Let D be a Dedekind domain such that every nonzero
ideal class of D contains a prime ideal and D contains no principal
primes. If D is a PLHFD but not an HFD such that [P ] ∈ Cl(D) has
exactly one prime ideal of D for some P , then

(1) S[P ] is a GCD-set and H[P ] is not an HF-set;
(2) Each x ∈ S[P ]

⋂ I(D) is P -primary.
(3) S[P ] is not a splitting multiplicative set.

Proof. (1), (2) Since D is a PLHFD and [P ] contains exactly one
prime ideal with |[P ]| < ∞, S[P ] is a GCD-set and each X ∈ S[P ]

⋂ I(D)
is P -primary[4, Theorem 3.2].

(3) Since D is not an HFD; so D has no nontrivial multiplicative
sets. But, if S[P ] = D∗ is trivial, then D is an atomic GCD-domain.
Thus D is a UFD. Hence S[P ] is not a splitting multiplicative set. ¤

We conclude this paper with some more examples.

Example 2.6.
(1) As in Example 2.4, we can not construct D with Cl(D) = Z2

such that S[P ] is a GCD-set by partition method. Let R be a Dedekind
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domain with divisor class group Cl(R) = Z2. Let T be the multiplica-
tive set generated by all principal primes of R. Then D = RT has no
principal primes and Cl(D) = Cl(R) = Z2. Thus D∗ = S[P ] for each
nonprincipal prime P of D. If S[P ] = D∗ is a GCD-set, then D is an
atomic GCD-domain. Hence D ia s UFD.

(2) As in Theorem 2.1, there exist a PLHFD D such that D has no
principal primes, Cl(D) = Zp, p ≥ 3 such that ∆(1) = 1,∆(2) = ∞.
Then S[P ] is a GCD-set, where [P ] = 1.
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