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ON THE GENERALIZED RANDERS CHANGE OF

BERWALD METRICS

Nany Lee

Abstract. In this paper, we study the generalized Randers change
∗L(x, y) = L(x, y) + bi(x, y)yi from the Brewald metric L and the
h-vector bi. And in search for a non-Berwald Landsberg metric, we
obtain the conditions on bi(x, y) under which ∗L is a Landsberg
metric.

1. Introduction

Let (M,L) be an n-dimensional Finsler manifold with the Cartan
connection

CΓ = (F i
j k, G

i
j, C

i
j k) .

L is called a Berwald metric if, in a standard local coordinate system

(xi, yi) in T̃M, F i
j k are functions of x ∈ M only.

L is called a Landsberg metric if the Landsberg tensor

L i
j k =

∂2Gi

∂yj∂yk
− F i

j k

vanishes, where Gi = 1
2
F i

j ky
jyk. By definition, every Berwald metric is

a Landsberg metric.
The question whether there exists a non-Berwald Landsberg metric

has been a long standing problem. In 2006, Z. Shen [12] showed that a
regular (y-global) Landsberg (α, β) metric is a Berwald metric. In 2008,
Z. Szabo [11] claimed that all regular Landsberg metrics are Berwald
metrics. But V.S. Matveev[9] maintained that there are some mistakes
in [11].
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In 1995, R. Bryant [4] constructed an abundance of non-Berwald
Landsberg metrics for 2-dimensional spaces in terms of a generalized
Finsler metric. G.S. Asanov [1, 2] produced y-local (α, β) non-Berwald
Landsberg metrics in dimension at least 3. The search for y-global non-
Berwald Landsberg metrics should be continued.

In this paper, we will perturb the Berwald metric L(x, y) in terms of
the h-vector bi(x, y), and we will have a generalized Randers change

∗L(x, y) = L(x, y) + bi(x, y)yi

in order to try to get a non-Berwald Landsberg metric.
We wonder whether there exist some bi(x, y)’s such that ∗L(x, y) is a

non-Berwald Landsberg metric. Therefore, we will produce conditions
under which ∗L(x, y) is a Landsberg metric.

In § 2, we set up the notations for Finsler manifolds and recall the
Cartan connection on Finsler manifolds which can be characterized by
the axioms. We will use the Cartan connection throughout this paper.
Then we define the generalized Randers change of a Finsler metric and
collect some results about the generalized Randers change.

In § 3, we will consider the generalized Randers change ∗L of Berwald
metric L. For the computational simplicity, we assume that L is a
Berwald metric. And we obtained the conditions under which ∗L is
a Landsberg metric.

Acknowledgment . We would like to express deep gratitude to
the referee for the very thorough reading of the paper and the helpful
comments on the style. The referee also directed me to the paper by
D. Bao [3].

2. Preliminaries

2.1. Finsler metric. Let M be a n-dimensional differentiable mani-
fold with a local coordinate system (x1, · · · , xn) .

And let (x1, · · · , xn, y1, · · · , yn) be the local coordinate system of the
tangent bundle TM of M induced by (x1, · · · , xn) .

A (real) Finsler metric L on the manifold M is a function L : TM → R
satisfying

(F1) L is smooth away from the zero section of TM ,
(F2) L(x, y) ≥ 0 and L(x, y) = 0 if and only if y = 0 ,
(F3) L(x, λy) = |λ|L(x, y) for all λ ∈ R and
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(F4) L is strongly convex, i.e.,
[

∂2L2

∂yi∂yj

]
is positive definite.

Let (M,L) be an n-dimensional Finsler manifold with the fundamen-
tal function L(x, y). Then the fundamental tensor, the angular metric
tensor and the Cartan tensor are defined by

gij(x, y) =

(
L2

2

)

yiyj

hij(x, y) = LLyiyj

Cijk(x, y) =
1

2
(gij)yk =

(
L2

4

)

yiyjyk

.

The indices on C are manipulated by gij and its inverse gij. We will use
later

(gij)yk = −2Ci j
k .

We consider the pull-back bundle π̃ : p∗TM → T̃M of the tangent

bundle π : TM → M by the projection p : T̃M → M . Here T̃M =
TM \ {zero section of π : TM → M} is the slit tangent bundle.

p∗TM
p̃−−−→ TM

π̃

y
yπ

T̃M −−−→
p

M

Then the strong convexity (F4) of L implies that the function gij on

the slit tangent bundle T̃M of M defines a Riemannian structure on

π̃ : p∗TM → T̃M .

2.2. Cartan connection. As a generalization of Levi-Civita connec-
tion on the Riemannian manifold, we have Cartan connection on the
Finsler manifold. Cartan connection CΓ = (F i

j k, G
i
j, C

i
j k) on a Finsler

manifold (M,L) can be characterized by the following axioms:

(C1) CΓ is metrical,
(C2) the (v)v-torsion of CΓ vanishes,
(C3) the (h)h-torsion of CΓ vanishes,
(C4) the deflection tensor of CΓ vanishes.
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Note that the axiom (C4) determines a non-linear connection Gj
i of

T T̃M uniquely. Then T T̃M = H ⊕ V , where H is the horizontal sub-

space of T T̃M with the basis
{

δ
δxi = ∂

∂xi −Gj
i

∂
∂yj

}n

i=1
and V is the ver-

tical subspace of T T̃M with the basis
{

∂
∂yi

}n

1=1
. These subspaces H

and V are identified with p∗TM by the isomorphisms χH : p∗TM → H
and χV : p∗TM → V defined by χH( ∂

∂xi ) = δ
δxi and χV( ∂

∂xi ) = ∂
∂yi ,

respectively.
The h- and v-covariant derivatives of a covariant vector Xi(x, y) with

respect to the Cartan connection are given by

Xi|j = ∂jXi − (∂̇hXi)G
h
j − F r

i j

Xi·j = ∂̇jXi − C r
i jXr

respectively, where ∂j = ∂
∂xj and ∂̇j = ∂

∂yj .

2.3. The generalized Randers change of Finsler metric. In 1980,
H. Izumi [7] introduced the concept of an h-vector bi, while studying
the conformal transformation of Finsler spaces. The h-vector bi is v-
covariant constant with respect to the Cartan connection and satisfies

LC h
i jbh = ρhij, ρ 6= 0.

Then we show that

∂̇jbi =
ρhij

L
= ρLyiyj 6= 0

and ρ is independent of directional arguments.
M. Matsumoto [8] introduced a transformation of Finsler metric given

by
∗L(x, y) = L(x, y) + bi(x)yi.

If L is a Riemannian metric, ∗L(x, y) is reduced to the Randers metric.
So this transformation ∗L(x, y) is called the Randers change of Finsler
metric.

Instead of the function bi of coordinates xi only, we will use the h-
vector bi(x, y) and define the generalized Randers change

∗L(x, y) = L(x, y) + bi(x, y)yi.

We can find some results regarding the generalized Randers change in
B.N. Prasad [10] and M. Gupta and P. Pandey [6].
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B.N. Prasad [10] obtained the relation between the Cartan connection
coefficients F i

j k and ∗F i
j k as

(2.1) ∗F i
j k = F i

j k + D i
j k,

where

D i
j k = LU i

j k +
1

τ
(Ujk − LUrjkb

r)li,

Uijk =
L

2
(LkjrV

r
i − LijrV

r
k − LikrV

r
j ) + LijAk + LikAj − LjkAi,

Ujk = Ejk − L

2
(1 + ρ)(LjrV

r
k + LkrV

r
j ),

Vj = Ej0 − Fj0,

Ai =
1

2(1 + ρ)
ρ|i +

1

2τ
(Vi − LVrib

r),

Vij =
1

(1 + ρ)

{
Fij − LLijkF

k
0 +

Lij

2∗L

{
(1 + ρ)E00 − 2LFk0b

k + ∗Lρ|0
}}

.

As usual,

U i
j k = gliUljk, V i

j = gilVlj, F i
j = gilFlj,

and

2Eij = bi|j + bj|i, 2Fij = bi|j − bj|i.

M. Gupta and P. Pandey [6] showed that if the h-vector bi is a gradi-
ent, that is

bi|j − bj|i = 0 and Fij = 0,

then the generalized Randers change ∗L(x, y) becomes a projective change
with projective factor P = E00

2∗L and the scalar ρ(x) is constant.

Recall that ∗L is a projective change of L if and only if ∗L|k·lyk =∗ L·l

and the projective factor P (x, y) =
∗L|kyk

2∗L . For this, see [5].
Therefore, by direct calculation, we have a useful identities which will

be used later.

Lemma 2.1. If there exists a gradient h-vector bi(x, y) on TM, we
have

yk δ

δxk
(Li) =

∂

∂xj
L,

yk δ

δxk
L = 0.
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3. Conditions under which ∗L is a Lansberg metric

In search for the non-Berwald Landsberg metric, we will assume that
L is a Berwald metric and the h-vector bi is a gradient. Let

∗L(x, y) = L(x, y) + bi(x, y)yi

be the generalized Randers change.
Note that if ∗L is a Berwald metric, ∗F i

j k are functions of x only and

by (2.1), which is equivalent to ∂jD
i
m k = 0 for all i, j, k, m. And note

that if ∗L is a Landsberg metric, the Landsberg tensor of ∗L vanishes.
I.e.,

∗L i
j k = ym ∂D i

m k

∂yj
= 0 for all i, j, k.

Now we have the necessary condition on bi(x, y) that ∗L is a Landsberg
metric.

Theorem 3.1. Let L be a Berwald metric on M and bi(x, y) be a
gradient h-vector. If the generalized Randers change ∗L(x, y) = L(x, y)+
bi(x, y)yi is a Landsberg metric, then bi(x, y) satisfies

(3.1) Li(βLj − Lbj) + L2LiLjrb
r − 2L∗LC i r

j Lr = 0.

Proof. Since the Landsberg tensor of L vanishes, by (2.1) the Lands-
berg tensor of ∗L

∗L i
j k = L i

j k + ym∂̇D i
m k = ym∂̇D i

m k

must vanish. I.e.,
ym∂̇D i

m k = 0

which is equivalent to
∂̇j(D

i
0 k) = D i

j k.

And this implies that
∂̇j(D

i
0 0) = 2D i

j 0,

using D i
j k = D i

k j.

On the other hand, B.N. Prasad [10] obtained the expression of D i
0 k :

D i
0 k = LV i

k +
1

τ
(Vk − LVrkb

k)Li.

And by direct calculation, we have

Di
00 =

Li

τ
E00.
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With the identities

∂̇j

(
1

τ

)
=

βLi − Lbj

(∗L)2
,

∂̇j(L
i) = Li

j − 2Ci r
j Lr,

∂̇j(Emr)y
r = 0,

∂̇j(E00) = Ej0,

we get (3.1).

Finally, we consider the necessary and sufficient condition that ∗L is
a Landsberg metric. Note that ∗L is a Landsberg metric if and only if

∗L i
j k = ym∂̇jD

i
m k = 0

which is equivalent to

∂̇jD
i
0 k = D i

j k.

Therefore, we have

Theorem 3.2. For a Berwald metric L on M and a gradient h-vector
bi(x, y), the generalized Randers change is a Landsberg metric if and only
if bi(x, y) satisfies the differential equation

D i
j k = LjV

i
k − 2LCi r

j Vrk +
1
∗L

Li(βLj − Lbj)(Vk − LVrkb
k)

+
1

τ
(Li

j − 2Ci r
j Lr)(Vk − LVrkb

r)

+
Li

τ

{
Ejk − LjVrkb

k − LVrk(ρLr
j − 2Cr s

j bs)
}

+
1

τ

{
1

2
L i

k jE00 + Li
kEj0 − (Lj + bj)V

i
k

}

− Li

τ 2

{
1

2
LrkjE00 + LrkEj0 − (Lj + bj)Vrk

}
br .

(3.2)

Remark . In order to find a non-Berwald Landsberg metric, it suf-
fices to have bi(x, y) satisfying (3.2) and not all ∂̇j(D

i
m k) = 0.
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