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CONVERGENCE THEOREMS OF ITERATIVE
ALGORITHMS FOR A GENERAL SYSTEM OF

VARIATIONAL INEQUALITIES WITH APPLICATIONS

Shin Min Kang, Young Chel Kwun∗ and Xiaolong Qin

Abstract. In this paper, we introduce an iterative method for
finding common elements of the set of solutions to a general system
of variational inequalities for inverse-strongly accretive mappings
and of the set of fixed points of strict pseudo-contractions in a real
Banach space. The results presented in this paper mainly improve
and extend the corresponding results announced by many others.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H
and PC be the metric projection of H onto C. Recall that a mapping
A : C → H is said to be inverse-strongly monotone if there exists a
positive real number α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C,

see [2], [7], [12], [27]. For such a case, A is said to be α-inverse-
strongly monotone. Recall also that a mapping T : C → C is said to
be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.
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T is said to be strictly pseudo-contractive [2] if there exists a constant
k ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C.

It is easy to see that the class of strict pseudo-contractions includes
the class of nonexpanive mappings as a special case. In this paper, we
denote by F (T ) the set of fixed points of the mapping T .

Recall that the classical variational inequality problem, denoted by
V I(C,A), is to find u ∈ C such that

(1.1) 〈Au, v − u〉 ≥ 0, ∀v ∈ C.

For a given z ∈ H, u ∈ C satisfies the inequality

〈u− z, v − u〉 ≥ 0, ∀v ∈ C

if and only if u = PCz. It is known that projection operator PC is
nonexpansive. It is also known that PC satisfies

(1.2) 〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, ∀x, y ∈ H.

Moreover, PCx is characterized by the properties: PCx ∈ C and 〈x −
PCx, PCx− y〉 ≥ 0 for all y ∈ C.

One can see that the variational inequality problem (1.1) is equiv-
alent to a fixed point problem. An element u ∈ C is a solution of
the variational inequality (1.1) if and only if u ∈ C is a fixed point
of the mapping PC(I − λA), where λ > 0 is a constant and I is the
identity mapping. This alternative equivalent formulation has played a
significant role in the studies of the variational inequalities and related
optimization problems.

Let A,B : C → H be two nonlinear mappings. Next, we consider
the following problem of finding (x∗, y∗) ∈ C × C such that

(1.3)
{ 〈λAy∗ + x∗ − y∗, x− x∗〉 ≥ 0, ∀x ∈ C,

〈µBx∗ + y∗ − x∗, x− y∗〉 ≥ 0, ∀x ∈ C,

which is said to be a general system of variational inequalities, where
λ > 0 and µ > 0 are two constants. In particular, if A = B, then
problem (1.3) reduces to finding (x∗, y∗) ∈ C × C such that

(1.4)
{ 〈λAy∗ + x∗ − y∗, x− x∗〉 ≥ 0, ∀x ∈ C,

〈µAx∗ + y∗ − x∗, x− y∗〉 ≥ 0, ∀x ∈ C,
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which is defined by Verma [21]-[24]. The problem (1.4) is called the
new system of variational inequalities. Further, if we add up the re-
quirement that x∗ = y∗, then problem (1.4) is reduced to the classical
variational inequality (1.1). The problem of finding solutions of (1.3)
and (1.4) by using iterative methods has been studied by many authors,
see [6], [8], [11], [15], [21]-[24] and the references therein.

Recently, many authors studied the problem of finding a common
element of the set of fixed points of nonexpansive mappings and the set
of solution of variational inequalities for α-inverse-strongly monotone
mappings in the framework of real Hilbert space, see [6], [7], [12], [16],
[27] and the references therein.

In 2007, Yao and Yao [27] introduced an iterative method for finding
a common element of the set of fixed points of a single nonexpansive
mapping and the set of solution of variational inequalities for a α-
inverse-strongly monotone mapping. To be more precise, they proved
the following theorem.

Theorem 1.1. Let C be a nonempty closed convex subset of a real
Hilbert space H. Let A be an α-inverse-strongly monotone mapping of
C into H and S be a nonexpansive mapping of C into itself such that
F (S) ∩ Ω 6= ∅, where Ω denotes the set of solutions of a variational
inequality for the α-inverse-strongly monotone mapping. Suppose that
{xn} and {yn} are given by

(1.5)





x1 = u ∈ C,

yn = PC(xn − λnAxn),
xn+1 = αnu + βnxn + γnSPC(I − λnA)yn, ∀n ≥ 1,

where {αn}, {βn} and {γn} are three sequences in [0, 1] and {λn} is a
sequence in [0, 2a]. Assume that {αn}, {βn}, {γn} and {λn} are chosen
so that λn ∈ [a, b] for some a, b with 0 < a < b < 2αn and

(a) αn + βn + γn = 1 for all n ≥ 1;
(b) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(c) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(d) limn→∞(λn+1 − λn) = 0.

Then {xn} converges strongly to PF (S)∩Ωu.

Very recently, Ceng et al. [8] further improved the results of Yao
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and Yao [27] by considering the following iterative method:

(1.6)





x1 = u ∈ C,

yn = PC(xn − µBxn),
xn+1 = αnu + βnxn + γnSPC(yn − λAyn), ∀n ≥ 1,

where A,B are two different inverse-strongly monotone mappings. Th-
ey obtained a strong convergence theorem by a relaxed extra-gradient
method for the system of variational inequalities (1.3) and a nonex-
pansive mapping S.

In this paper, we improve the results of Ceng et al. [8] and Yao and
Yao [27] from Hilbert spaces to Banach spaces. To be more precise, we
consider an iterative method which involves a pair of inverse-strongly
accretive mappings and a strict pseudo-contraction. Note that no Ba-
nach space is q-uniformly smooth for q > 2, see [25] for more details.
We prove the strong convergence of the purposed iterative scheme in
uniformly convex and 2-uniformly smooth Banach spaces. The results
presented in this paper improve and extend the corresponding results
announced by Ceng et al. [8], Iiduka and Takahashi [12], Yao and Yao
[27] and many others.

2. Preliminaries

Let C be a nonempty closed convex subset of a Banach space E and
E∗ be the dual space of E. Let 〈·, ·〉 denote the pairing between E and
E∗. For q > 1, the generalized duality mapping Jq : E → 2E∗ is defined
by

Jq(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖q, ‖f‖ = ‖x‖q−1}, ∀x ∈ E.

In particular, J = J2 is called the normalized duality mapping. It is
known that Jq(x) = ‖x‖q−2J(x) for all x ∈ E. If E is a Hilbert space,
then J = I, the identity mapping. Further, we have the following
properties of the generalized duality mapping Jq:

(1) Jq(x) = ‖x‖q−2J2(x) for all x ∈ E with x 6= 0.
(2) Jq(tx) = tq−1Jq(x) for all x ∈ E and t ∈ [0,∞).
(3) Jq(−x) = −Jq(x) for all x ∈ E.
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Let U = {x ∈ E : ‖x‖ = 1}. E is said to uniformly convex if, for
any ε ∈ (0, 2], there exists δ > 0 such that, for any x, y ∈ U ,

‖x− y‖ ≥ ε implies
∥∥∥x + y

2

∥∥∥ ≤ 1− δ.

It is known that a uniformly convex Banach space is reflexive and
strictly convex. E is said to be Gâteaux differentiable if the limit

(2.1) lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ U . In this case, E is said to be smooth.
The modulus of smoothness of E is defined by

ρ(t) = sup
{

1
2
(‖x + y‖+ ‖x− y‖)− 1 : x, y ∈ E, ‖x‖ = 1, ‖y‖ ≤ t

}
.

A Banach space E is said to be uniformly smooth if limt→0
ρ(t)

t = 0.
Let q > 1. A Banach space E is said to be q-uniformly smooth if there
exists a fixed constant c > 0 such that ρ(t) ≤ ctq. If E is q-uniformly
smooth, then q ≤ 2 and E is uniformly smooth.

Note that
(1) E is a uniformly smooth Banach space if and only if J is single-

valued and uniformly continuous on any bounded subset of E.
(2) All Hilbert spaces, Lp (or lp) spaces (p ≥ 2) and the Sobolev

spaces W p
m (p ≥ 2) are 2-uniformly smooth, while Lp (or lp) and W p

m

spaces (1 < p ≤ 2) are p-uniformly smooth.
(3) Typical examples of both uniformly convex and uniformly smoo-

th Banach spaces are Lp, where p > 1. More precisely, Lp is min{p, 2}-
uniformly smooth for every p > 1.

Next, we always assume that E is a smooth Banach space. Let C
be a nonempty closed convex subset of E. Recall that an operator A
of C into E is said to be accretive if

〈Ax−Ay, J(x− y)〉 ≥ 0, ∀x, y ∈ C.

A is said to be α-inverse strongly accretive if there exists a constant
α > 0 such that

〈Ax−Ay, J(x− y)〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.
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Let D be a subset of C and Q be a mapping of C into D. Then Q
is said to be sunny if

Q(Qx + t(x−Qx)) = Qx,

whenever Qx + t(x − Qx) ∈ C for x ∈ C and t ≥ 0. A mapping Q of
C into itself is called a retraction if Q2 = Q. If a mapping Q of C into
itself is a retraction, then Qz = z for all z ∈ R(Q), where R(Q) is the
range of Q. A subset D of C is called a sunny nonexpansive retract of
C if there exists a sunny nonexpansive retraction from C onto D.

The following result describes a characterization of sunny nonex-
pansive retractions on a smooth Banach space.

Proposition 2.1. (Reich [17]) Let E be a smooth Banach space
and C be a nonempty subset of E. Let Q : E → C be a retraction
and J be the normalized duality mapping on E. Then the following
are equivalent:

(a) Q is sunny and nonexpansive.
(b) ‖Qx−Qy‖2 ≤ 〈x− y, J(Qx−Qy)〉 for all x, y ∈ E.
(c) 〈x−Qx, J(y −Qx)〉 ≤ 0 for all x ∈ E and y ∈ C.

Proposition 2.2. (Kitahara and Takahashi [13]) Let E be a uni-
formly convex and uniformly smooth Banach space and C be a non-
empty closed convex subset of E. Let T be a nonexpansive mapping
of C into itself with F (T ) 6= ∅. Then the set F (T ) is a sunny nonex-
pansive retract of C.

For the class of nonexpansive mappings, one classical way to study
nonexpansive mappings is to use contractions to approximate a nonex-
pansive mapping ([2], [18]). More precisely, take t ∈ (0, 1) and define
a contraction Tt : C → C by

Ttx = tu + (1− t)Tx, ∀x ∈ C,

where u ∈ C is a fixed point. Banach’s contraction mapping principle
guarantees that Tt has a unique fixed point xt in C. That is,

xt = tu + (1− t)Txt.
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It is unclear, in general, what the behavior of xt is as t → 0, even if
T has a fixed point. However, in the case of T having a fixed point,
Browder [2] proved that if E is a Hilbert space, then xt converges
strongly to a fixed point of T . Reich [18] extended Broweder’s result
to the setting of Banach spaces and proved that if E is a uniformly
smooth Banach space, then xt converges strongly to a fixed point of T
and the limit defines the (unique) sunny nonexpansive retraction from
C onto F (T ).

Reich [18] showed that if E is uniformly smooth and if D is the fixed
point set of a nonexpansive mapping from C into itself, then there is
a unique sunny nonexpansive retraction from C onto D and it can be
constructed as follows.

Proposition 2.3. Let E be a uniformly smooth Banach space and
C be a nonempty closed convex subset of E. Let T : C → C be
a nonexpansive mapping with a fixed point. For each fixed u ∈ C
and every t ∈ (0, 1), the unique fixed point xt ∈ C of the contraction
C 3 x 7→ tu + (1 − t)Tx converges strongly as t → 0 to a fixed point
of T . Define Q : C → D by Qu = s− limt→0 xt. Then Q is the unique
sunny nonexpansive retract from C onto D, that is, Q satisfies the
property:

〈u−Qu, J(y −Qu)〉 ≤ 0, ∀u ∈ C, y ∈ D.

Recently, Aoyama et al. [1] first considered the following generalized
variational inequality problem in a smooth Banach space E.

Let C be a nonempty closed convex subset of E and A be an accre-
tive operator of C into E. Find a point u ∈ C such that

(2.2) 〈Au, J(v − u)〉 ≥ 0, ∀v ∈ C.

Next, we use BV I(C, A) to denote the set of solutions of variational
inequality problem (2.2).

Aoyama et al. [1] proved that the variational inequality problem
(2.2) is equivalent to a fixed point problem. An element u ∈ C is a
solution of the variational inequality (2.2) if and only if u ∈ C is a fixed
point of the mapping QC(I − λA), where I is the identity mapping,
λ > 0 is a constant and QC is a sunny nonexpansive retraction from
E onto C, see [1] for more details.
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Motivated by Aoyama et al. [1], we introduce the following general
system of variational inequalities in a smooth Banach space.

Let A : C → E be a α-inverse strongly accretive mapping and
B : C → E be a β-inverse strongly accretive mapping, respectively.
Find (x∗, y∗) ∈ C × C such that

(2.3)
{ 〈λAy∗ + x∗ − y∗, J(x− x∗)〉 ≥ 0, ∀x ∈ C,

〈µBx∗ + y∗ − x∗, J(x− y∗)〉 ≥ 0, ∀x ∈ C,

where λ > 0 and µ > 0 are two constants. In particular, if A = B,
then problem (2.3) is reduced to finding (x∗, y∗) ∈ C × C such that

(2.4)
{ 〈λAy∗ + x∗ − y∗, J(x− x∗)〉 ≥ 0, ∀x ∈ C,

〈µAx∗ + y∗ − x∗, J(x− y∗)〉 ≥ 0, ∀x ∈ C.

If we add up the requirement that x∗ = y∗, then problem (2.4) is
reduced to the classical variational inequality (2.2). In a real Hilbert
space, the system (2.3) and (2.4) reduce to (1.3) and (1.4), respectively.

In order to prove our main results, we need the following lemmas
and definitions.

Lemma 2.1. (Bruck [4]) Let C be a nonempty closed convex subset
of a strictly convex Banach space E. Let {Tn : n ∈ N} be a sequence of
nonexpansive mappings on C. Suppose that

⋂∞
n=1F (Tn) is nonempty.

Let {λn} be a sequence of positive numbers with
∑∞

n=1 λn = 1. Then
a mapping S on C defined by

Sx =
∞∑

n=1

λnTnx, ∀x ∈ C

is well defined, nonexpansive and F (S) =
⋂∞

n=1F (Tn) holds.

Lemma 2.2. (Suzuki [19]) Let {xn} and {yn} be bounded sequences
in a Banach space X and βn be a sequence in [0, 1] with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Suppose that xn+1 = (1− βn)yn + βnxn for all integers n ≥ 0 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.
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Lemma 2.3. (Xu [26]) Assume that {αn} is a sequence of nonneg-
ative real numbers such that

αn+1 ≤ (1− γn)αn + δn,

where γn is a sequence in (0, 1) and {δn} is a sequence such that
(a)

∑∞
n=1 γn = ∞;

(b) lim supn→∞
δn

γn
≤ 0 or

∑∞
n=1 |δn| < ∞.

Then limn→∞ αn = 0.

Lemma 2.4. (Xu [25]) Let E be a real 2-uniformly smooth Banach
space with the best smooth constant K. Then the following inequality
holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, Jx〉+ 2‖Ky‖2, ∀x, y ∈ E.

Lemma 2.5. (Browder [3]) Let E be a uniformly convex Banach
space and C be a nonempty closed convex subset of E. Let T : C → C
be a nonexpansive mapping. Then I − T is demi-closed at zero.

Lemma 2.6. For given x∗, y∗ ∈ C, where y∗ = QC(x∗ − µBx∗),
(x∗, y∗) is a solution of problem (2.3) if and only if x∗ is a fixed point
of the mapping G : C → C defined by

G(x) = QC [QC(x− µBx)− λAQC(x− µBx)],
where QC is a sunny nonexpansive retraction from E onto C.

Proof.{ 〈λAy∗ + x∗ − y∗, J(x− x∗)〉 ≥ 0, ∀x ∈ C,

〈µBx∗ + y∗ − x∗, J(x− y∗)〉 ≥ 0, ∀x ∈ C.

⇐⇒
{

x∗ = QC(y∗ − λAy∗),
y∗ = QC(x∗ − µBx∗).

⇐⇒ x∗ = QC [QC(x∗ − µBx∗)− λAQC(x∗ − µBx∗)].
This completes the proof. ¤

Recall that T : C → C is said to be strictly pseudo-contractive if
there exists a constant λ ∈ (0, 1) such that

〈Tx− Ty, J(x− y)〉
≤ ‖x− y‖2 − λ‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C.

For the strict pseudo-contractions, we have the following result.
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Lemma 2.7. Let C be a nonempty subset of a real 2-uniformly
smooth Banach space E with the best smooth constant K. Let T :
C → C be a strict pseudo-contraction with the constant λ ∈ (0, 1).
For a ∈ (0, 1), define Tαx = (1− a)x + aTx. Then, as a ∈ (0, b), where
b = min

{
1, λ

K2

}
and Ta is a nonexpansive mapping with F (Ta) =

F (T ).

Proof. For any x, y ∈ C, from Lemma 2.4, one has

‖Tax− Tay‖2
= ‖(1− a)x + aTx− [(1− a)y + aTy]‖2
= ‖(1− y) + a[Tx− Ty − (x− y)]‖2
≤ ‖x− y‖2 + 2a〈Tx− Ty − (x− y), J(x− y)〉

+ 2K2a2‖Tx− Ty − (x− y)‖2
= ‖x− y‖2 + 2a〈Tx− Ty, J(x− y)〉 − 2a‖x− y‖2

+ 2K2a2‖Tx− Ty − (x− y)‖2
≤ ‖x− y‖2 + 2a[‖x− y‖2 − λ‖Tx− Ty − (x− y)‖2]
− 2a‖x− y‖2 + 2K2a2‖Tx− Ty − (x− y)‖2

= ‖x− y‖2 − 2aλ‖Tx− Ty − (x− y)‖2
+ 2K2a2‖Tx− Ty − (x− y)‖2

≤ ‖x− y‖2.

From the assumption, one obtains that Ta is nonexpansive. It is easy
to see that F (Ta) = F (T ). ¤

3. Main results

Now, we are ready to give our main results.

Theorem 3.1. Let E be a uniformly convex and 2-uniformly smoo-
th Banach space with the best smooth constant K and C be a non-
empty closed convex subset of E. Let QC be a sunny nonexpansive
retraction from E onto C. Let A : C → E be an α-inverse-strongly
accretive mapping and B : C → E be a β-inverse-strongly accretive
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mapping. Let T : C → C be a strict pseudo-contraction with the con-
stant λ ∈ (0, 1) such that F (T ) 6= ∅. For any x ∈ C, define a mapping
S : C → C by Sx = (1 − a)x + aTx, where a ∈ (

0, min
{
1, λ

K2

})
.

Assume that F := F (T ) ∩ F (G) 6= ∅, where G is defined as Lemma
2.6. Suppose that {xn} is generated by





x1 = u ∈ C,

yn = QC(xn − µBxn),
zn = QC(yn − λAyn),
xn+1 = αnu + βnxn + γn[δnSxn + (1− δn)zn], ∀n ≥ 1,

(∆)

where λ ∈ (
0, α

K2

]
, µ ∈ (

0, β
K2

]
and {αn}, {βn}, {γn} and {δn} are

sequences in [0, 1] such that
(C1) αn + βn + γn = 1 for all n ≥ 1;
(C2) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(C4) limn→∞ δn = δ ∈ (0, 1).

Then the sequence {xn} defined by (∆) converges strongly to x̄ = QF u
and (x̄, ȳ) is a solution of problem (2.3), where ȳ = QC(x̄− µBx̄) and
QF is a sunny nonexpansive retraction of C onto F.

Proof. From Lemma 2.7, we see that S is nonexpansive with F (T ) =
F (S). It follows that F (S) is closed and convex. Next, we show that
the mappings I − λA and I − µB are nonexpansive. Indeed, from the
assumption λ ∈ (

0, α
K2

]
and Lemma 2.4, for all x, y ∈ C, we have

‖(I − λA)x− (I − λA)y‖2
= ‖(x− y)− λ(Ax−Ay)‖2
≤ ‖x− y‖2 − 2λ〈Ax−Ay, J(x− y)〉+ 2K2λ2‖Ax−Ay‖2
≤ ‖x− y‖2 − 2λα‖Ax−Ay‖2 + 2K2λ2‖Ax−Ay‖2
= ‖x− y‖2 + 2λ(λK2 − α)‖Ax−Ay‖2
≤ ‖x− y‖2.

This shows that I − λA is a nonexpansive mapping. In similar way,
we can show that I − µB is also nonexpansive. This implies that the
mapping G is nonexpansive. It follows F (G) is closed and convex.
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This shows that F = F (T ) ∩ F (G) is closed and convex. Letting
x∗ ∈ F (T ) ∩ F (G), from Lemma 2.6, we have

x∗ = QC [QC(x∗ − µBx∗)− λAQC(x∗ − µBx∗)].

Putting y∗ = QC(x∗ − µBx∗), we obtain that

x∗ = QC(y∗ − λAy∗).

From the algorithm (∆), we see

(3.1)

‖zn − x∗‖ = ‖QC(I − λA)yn −QC(I − λA)y∗‖
≤ ‖(I − λA)yn − (I − λA)y∗‖
≤ ‖yn − y∗‖
= ‖QC(xn − µBxn)−QC(x∗ − µBx∗)‖
≤ ‖(I − µB)xn − (I − µB)x∗‖
≤ ‖xn − x∗‖.

Putting tn = δnSxn + (1− δn)zn for each n ≥ 1, we obtain

(3.2)
‖tn − x∗‖ ≤ δn‖Sxn − x∗‖+ (1− δn)‖zn − x∗‖

≤ ‖xn − x∗‖.
It follows that

‖xn+1 − x∗‖ = ‖αnu + βnxn + γntn − x∗‖
≤ αn‖u− x∗‖+ βn‖xn − x∗‖+ γn‖tn − x∗‖
≤ αn‖u− x∗‖+ βn‖xn − x∗‖+ γn‖xn − x∗‖
≤ αn‖u− x∗‖+ (1− αn)‖xn − x∗‖
≤ max{‖u− x∗‖, ‖x1 − x∗‖}
= ‖u− x∗‖,

which implies that the sequence {xn} is bounded. Consequently, {yn},
{zn} and {tn} all are bounded. On the other hand, we have

(3.3)

‖tn+1 − tn‖
= ‖δn+1Sxn+1 + (1− δn+1)zn+1 − [δnSxn + (1− δn)zn]‖
≤ δn+1‖Sxn+1 − Sxn‖+ (1− δn+1)‖zn+1 − zn‖

+ ‖Sxn − zn‖|δn+1 − δn|
≤ ‖xn+1 − xn‖+ |δn+1 − δn|M1,
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where M1 is an appropriate constant such that M1 ≥ supn≥1{‖Sxn −
zn‖}.

Next, we claim that

(3.4) lim
n→∞

‖xn+1 − xn‖ = 0.

Putting ln = xn+1−βnxn

1−βn
for each n ≥ 1, we see

(3.5) xn+1 = (1− βn)ln + βnxn, ∀n ≥ 1.

Now, we compute ‖ln+1 − ln‖. From

ln+1 − ln

=
αn+1u + γn+1tn+1

1− βn+1
− αnu + γntn

1− βn

=
αn+1

1− βn+1
u +

1− βn+1 − αn+1

1− βn+1
tn+1 − αn

1− βn
u

− 1− βn − αn

1− βn
tn

=
αn+1

1− βn+1
(u− tn+1) +

αn

1− βn
(tn − u) + tn+1 − tn,

we have

(3.6)
‖ln+1 − ln‖ ≤ αn+1

1− βn+1
‖u− tn+1‖+

αn

1− βn
‖tn − u‖

+ ‖tn+1 − tn‖.

Substituting (3.3) into (3.6), we arrive at

‖ln+1 − ln‖ − ‖xn+1 − xn‖
≤ αn+1

1− βn+1
‖u− tn+1‖+

αn

1− βn
‖tn − u‖+ |δn+1 − δn|M1.

It follows from the conditions (C2), (C3) and (C4) that

lim
n→∞

‖ln+1 − ln‖ − ‖xn+1 − xn+1‖ < 0.
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From Lemma 2.2, we obtain that

(3.7) lim
n→∞

‖ln − xn‖ = 0.

Thanks to (3.5), we see that

xn+1 − xn = (1− βn)(ln − xn).

Combining the condition (C3) and (3.7), we obtain that (3.4) holds.
Noting that

xn+1 − xn = αn(u− xn) + γn(tn − xn),

and the conditions (C2) and (C3), we obtain

(3.8) lim
n→∞

‖tn − xn‖ = 0.

Next, we show that

(3.9) lim sup
n→∞

〈u− x̄, J(xn − x̄)〉 ≤ 0,

where x̄ = QF u, QF is a sunny nonexpansive retraction of C onto F.
Define a mapping D : C → C by

Dx = δSx + (1− δ)QC(I − λA)QC(I − µB)x, ∀x, y ∈ C,

where (0, 1) 3 δ = limn→∞ δn. From Lemma 2.1, we see that the
mapping D is a nonexpansive mapping such that

F (D) = F (S) ∩ F (QC(I − λA)QC(I − µB))

= F (T ) ∩ F (G) = F.

Note that

‖tn −Dxn‖
= ‖δnSxn + (1− δn)zn −Dxn‖
= ‖δnSxn + (1− δn)zn − δSxn

− (1− δ)QC(I − λA)QC(I − µB)xn‖
≤ |δn − δ|M2,
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where M2 is an appropriate constant such that

M2 ≥ sup
n≥1

{‖Sxn − (1− δ)QC(I − λA)QC(I − µB)xn‖}.

It follows that

‖xn −Dxn‖
≤ ‖xn − xn+1‖+ ‖xn+1 −Dxn‖
≤ ‖xn − xn+1‖+ αn‖u−Dxn‖+ βn‖xn −Dxn‖+ γn‖tn −Dxn‖
≤ ‖xn − xn+1‖+ αn‖u−Dxn‖+ βn‖xn −Dxn‖+ γn|δn − δ|M2.

This implies that

(1− βn)‖xn −Dxn‖ ≤ ‖xn − xn+1‖+ αn‖u−Dxn‖
+ γn|δn − δ|M2.

It follows from the conditions (C2)-(C4) and (3.4) that

lim
n→∞

‖xn −Dxn‖ = 0.

Let zt be the fixed point of the contraction z 7→ tu + (1− t)Dz, where
t ∈ (0, 1). That is,

zt = tu + (1− t)Dzt.

It follows that

‖zt − xn‖ = ‖(1− t)(Dzt − xn) + t(u− xn)‖.

On the other hand, we have

‖zt − xn‖2 ≤ (1− t)2‖Dzt − xn‖2 + 2t〈u− xn, J(zt − xn)〉
≤ (1− 2t + t2)‖zt − xn‖2 + fn(t)

+ 2t〈u− zt, J(zt − xn)〉+ 2t‖zt − xn‖2,

where

(3.10)
fn(t) = (2‖zt − xn‖+ ‖xn −Dxn‖)‖xn −Dxn‖

→ 0 as n → 0.
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It follows that

(3.11) 〈zt − u, J(zt − xn)〉 ≤ t

2
‖zt − xn‖2 +

1
2t

fn(t).

Letting n →∞ in (3.10) and noting (3.11), we arrive at

(3.12) lim sup
n→∞

〈zt − u, J(zt − xn)〉 ≤ t

2
M,

where M > 0 is an appropriate constant such that M ≥ ‖zt−xn‖2 for
all t ∈ (0, 1) and n ≥ 0. Letting t → 0 in (3.12), we have that

lim sup
t→0

lim sup
n→∞

〈zt − u, J(zt − xn)〉 ≤ 0.

So, for any ε > 0, there exists a positive number δ1, for t ∈ (0, δ1), such
that

(3.13) lim sup
n→∞

〈zt − u, J(zt − xn)〉 ≤ ε

2
.

On the other hand, we see that QF (D)u = limt→0 zt and F (D) = F .
It follows that zt → x̄ = QF u as t → 0. There exists δ2 > 0 for
t ∈ (0, δ2), such that

|〈u− x̄, J(xn − x̄)〉 − 〈zt − u, J(zt − xn)〉|
≤ |〈u− x̄, J(xn − x̄)〉 − 〈u− x̄, J(xn − zt)〉|

+ |〈u− x̄, J(xn − zt)〉 − 〈zt − u, J(zt − xn)〉|
≤ |〈u− x̄, J(xn − x̄)− J(xn − zt)〉|+ |〈zt − x̄, J(xn − zt)〉|
≤ ‖u− x̄‖‖J(xn − x̄)− J(xn − zt)‖+ ‖zt − x̄‖‖xn − zt‖
<

ε

2
.

Choosing δ = min{δ1, δ2} for all t ∈ (0, δ), we have that

〈u− x̄, J(xn − x̄)〉 ≤ 〈zt − u, J(zt − xn)〉+
ε

2
.

This implies that

lim sup
n→∞

〈u− x̄, J(xn − x̄)〉 ≤ lim
n→∞

〈zt − u, J(zt − xn)〉+
ε

2
.
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It follows from (3.13) that

lim sup
n→∞

〈u− x̄, J(xn − x̄)〉 ≤ ε.

Since ε is chosen arbitrarily, we have that

lim sup
n→∞

〈u− x̄, J(xn − x̄)〉 ≤ 0.

It follows from (3.4) and uniform smoothness of E that

(3.14) lim sup
n→∞

〈u− x̄, J(xn+1 − x̄)〉 ≤ 0.

Finally, we show that xn → x̄ as n →∞. Observe that

‖xn+1 − x̄‖2
= 〈αnu + βnxn + γntn − x̄, J(xn+1 − x̄)〉
= αn〈u− x̄, J(xn+1 − x̄)〉+ βn〈xn − x̄, J(xn+1 − x̄)〉

+ γn〈tn − x̄, J(xn+1 − x̄)〉
≤ αn〈u− x̄, J(xn+1 − x̄)〉+ βn‖xn − x̄‖‖xn+1 − x̄‖

+ γn‖tn − x̄‖‖xn+1 − x̄‖
≤ αn〈u− x̄, J(xn+1 − x̄)〉+ (1− αn)‖xn − x̄‖‖xn+1 − x̄‖
≤ αn〈u− x̄, J(xn+1 − x̄)〉+

1− αn

2
(‖xn − x̄‖2 + ‖xn+1 − x̄‖2),

which implies that

(3.15)
‖xn+1 − x̄‖2 ≤ (1− αn)‖xn − x̄‖2

+ 2αn〈u− x̄, J(xn+1 − x̄)〉.

From the condition (C2), (3.14) and applying Lemma 2.3 to (3.15), we
obtain that

lim
n→∞

‖xn − x̄‖ = 0.

This completes the proof. ¤
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Remark 3.1. Theorem 3.1 is applicable to Lp for all p ≥ 2, how-
ever, we do not know whether it works in Lp for 1 < p < 2.

From Lemma 2.1, we see that: For given x∗, y∗ ∈ C, where y∗ =
QC(x∗−µAx∗), (x∗, y∗) is a solution of problem (2.4) if and only if x∗

is a fixed point of the mapping H : C → C defined by

(3.16) H(x) = QC [QC(x− µAx)− λAQC(x− µAx)],

where QC is a sunny nonexpansive retraction from E onto C.
If A = B, then Theorem 3.1 is reduced to the following.

Corollary 3.2. Let E be a uniformly convex and 2-uniformly
smooth Banach space with the best smooth constant K and C be a
nonempty closed convex subset of E. Let QC be a sunny nonexpansive
retraction from E onto C and A : C → E be an α-inverse strongly-
accretive mapping. Let T : C → C be a strict pseudo-contraction
with the constant λ ∈ (0, 1) such that F (T ) 6= ∅. For any x ∈ C,
define a mapping S : C → C by Sx = (1 − a)x + aTx, where a ∈(
0, min

{
1, λ

K2

})
. Assume that F := F (T ) ∩ F (H) 6= ∅, where H is

defined as (3.16). Suppose that {xn} is generated by

(3.17)





x1 = u ∈ C,

yn = QC(xn − µAxn),
zn = QC(yn − λAyn),
xn+1 = αnu + βnxn + γn[δSxn + (1− δ)zn], ∀n ≥ 1,

where δ ∈ (0, 1), λ, µ ∈ (
0, α

K2

]
and {αn}, {βn} and {γn} are sequences

in [0, 1] such that
(C1) αn + βn + γn = 1 for all n ≥ 1;
(C2) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Then the sequence {xn} defined by (3.17) converges strongly to x̄ =
QF u and (x̄, ȳ) is a solution of problem (2.4), where ȳ = QC(x̄−µAx̄)
and QF is a sunny nonexpansive retraction of C onto F.

In a real Hilbert space, for the problem (1.3), we have the following
theorem.
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Theorem 3.3. (Ceng et al. [8]) For given x∗, y∗ ∈ C, where y∗ =
PC(x∗−µBx∗), (x∗, y∗) is a solution of problem (1.3) if and only if x∗

is a fixed point of the mapping G′ : C → C defined by

(3.18) G′(x) = PC [PC(x− µBx)− λAPC(x− µBx)].

It is well known that the smooth constant K =
√

2
2 in the framework

of Hilbert spaces. From Theorem 3.1, we can obtain the following result
immediately.

Corollary 3.4. Let H be a real Hilbert space and C be a non-
empty closed convex subset of H. Let A : C → H be an α-inverse-
strongly monotone mapping and B : C → E be a β-inverse-strongly
monotone mapping. Let S : C → C be a nonexpansive mapping with
a fixed point. Assume that F := F (S)∩F (G′) 6= ∅, where G′ is defined
as (3.18). Suppose that {xn} is generated by

(3.19)





x1 = u ∈ C,

yn = PC(xn − µBxn),
zn = PC(yn − λAyn),
xn+1 = αnu + βnxn + γn[δSxn + (1− δ)zn], ∀n ≥ 1,

where δ ∈ (0, 1), λ ∈ (0, 2α], µ ∈ (0, 2β] and {αn}, {βn} and {γn} are
sequences in [0, 1] such that

(C1) αn + βn + γn = 1 for all n ≥ 1;
(C2) limn→∞ αn = 0,

∑∞
n=1 αn = ∞;

(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Then the sequence {xn} defined by (3.19) converges strongly to x̄ =
PF u and (x̄, ȳ) is a solution of problem (1.3), where ȳ = PC(x̄−µBx̄).

Remark 3.2. If f : C → C is a contractive mapping and we replace
u by f(xn) in the recursion formula (∆), we can obtain the so-called
viscosity iteration method. We note that all theorems and corollaries
of this paper carry over trivially to the so-called viscosity iteration
method, see [20] for more details.

4. Applications

In this section, we always assume that E is a uniformly convex and
2-uniformly smooth Banach space. Let C be a nonempty closed convex
subset of E.
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For the variational problem (2.2), In the case when C = E, we see
that BV I(E,A) = A−1(0) holds, where

A−1(0) = {u ∈ E : Au = 0}.
Taking λ = µ, C = E and A = B in the problem (2.3), we have the

following problem: Find (x∗, y∗) ∈ E × E such that

(4.1)
{ 〈λAy∗ + x∗ − y∗, J(x− x∗)〉, ∀x ∈ E,

〈λAx∗ + y∗ − x∗, J(x− y∗)〉, ∀x ∈ E.

From Lemma 2.6, we see that: For given x∗, y∗ ∈ E, where y∗ =
(x∗ − λAx∗), (x∗, y∗) is a solution of the problem (4.1) if and only if
x∗ is a fixed point of the mapping V : E → E defined by

V (x) = (x− λAx)− λA(x− λAx).

Therefore, we can obtain that F (V ) = A−1(0). Indeed, it is sufficient
to show that F (V ) ⊆ A−1(0). Letting x∗ ∈ F (V ), we see that

(4.2)
x∗ = (x∗ − λAx∗)− λA(x∗ − λAx∗)

= y∗ − λAy∗,

where

(4.3) y∗ = x∗ − λAx∗.

Combining (4.2) with (4.3), we arrive at

(4.4) 2(x∗ − y∗) = λ(Ax∗ −Ay∗).

Suppose the contrary, x∗ /∈ A−1(0), i.e., Ax∗ 6= 0. From (4.3), we see
that x∗ 6= y∗, which combines with (4.4) yields that Ax∗ 6= Ay∗. Notice
that

‖x∗ − y∗‖2
= ‖(y∗ − λAy∗)− (x∗ − λAx∗)‖2
= ‖(y∗ − x∗)− λ(Ay∗ −Ax∗)‖2
≤ ‖y∗ − x∗‖2 − 2λ〈Ay∗ −Ax∗, J(y∗ − x∗)〉

+ 2K2λ2‖Ay∗ −Ax∗‖2
≤ ‖y∗ − x∗‖2 − 2λα‖Ay∗ −Ax∗‖2 + 2K2λ2‖Ay∗ −Ax∗‖2
= ‖y∗ − x∗‖2 + 2λ(λK2 − α)‖Ay∗ −Ax∗‖2
< ‖y∗ − x∗‖2.
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This is a contradiction, which shows that x∗ ∈ A−1(0). That is F (V ) =
A−1(0).

From above, we can obtain the following results immediately.

Theorem 4.1. Let E be a uniformly convex and 2-uniformly smoo-
th Banach space with the best smooth constant K and A be an α-
inverse-strongly accretive mapping. Let T be a strict pseudo-contrac-
tion with the constant λ ∈ (0, 1) such that F (T ) 6= ∅. For any x ∈ E,
define a mapping S : E → E by Sx = (1 − a)x + aTx, where a ∈(
0, min

{
1, λ

K2

})
. Assume that F := F (T )∩A−1(0) 6= ∅. Suppose that

{xn} is generated by

(4.5)





x1 = u ∈ E,

yn = xn − λAxn,

zn = yn − λAyn,

xn+1 = αnu + βnxn + γn[δSxn + (1− δ)zn], ∀n ≥ 1,

where δ ∈ (0, 1), λ ∈ (
0, α

K2

]
and {αn}, {βn} and {γn} are sequences

in [0, 1] such that
(C1) αn + βn + γn = 1 for all n ≥ 1;
(C2) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Then the sequence {xn} defined by (4.5) converges strongly to x̄ =
QF u, where QF is a sunny nonexpansive retraction of E onto F.

It is well known that the class of pseudo-contractions is one of the
most important classes of mappings among nonlinear mappings. To
find a fixed point of pseudo-contraction is the central and important
topics in nonlinear functional analysis. Within the past 40 years or so,
mathematicians have been devoting to the studies on the existence and
convergence of fixed points for pseudo-contractions. Closely related
to the class of pseudo-contractive mappings is the class of accretive
mappings. Recall that an operator A with domain D(A) and range
R(A) in E is accretive if for each xi ∈ D(A) and yi ∈ Axi (i = 1, 2),

〈y2 − y1, J(x2 − x1)〉 ≥ 0.

An accretive operator A is m-accretive if R(I + rA) = E for each
r > 0. Next, we assume that A is m-accretive and has a zero (i.e., the
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inclusion 0 ∈ A(z) is solvable). The set of zeros of A is denoted by Ω.
Hence,

Ω = {z ∈ D(A) : 0 ∈ A(z)} = A−1(0).

For each r > 0, we denote by Jr the resolvent of A, i.e., Jr = (I +
rA)−1. Note that if A is m-accretive, then Jr : E → E is nonexpansive
and F (Jr) = Ω for all r > 0.

We observe that x is a zero of the accretive mapping A if and only
if it is a fixed point of the pseudo-contractive mapping T := I −A. It
is well known (see [9]) that if A is accretive then the solutions of the
equation Ax = 0 correspond to the equilibrium points of some evolution
systems. Consequently, considerable research efforts, especially within
the past 15 years or so, have been devoted to iterative methods for
approximating the zeros of accretive operators (see for example [5],
[10], [14], [18], [28], [29]).

From Theorem 3.1, we can conclude the following result easily.

Theorem 4.2. Let E be a uniformly convex and 2-uniformly smoo-
th Banach space with the best smooth constant K. Let B be a β-
inverse-strongly accretive mapping and A be a m-accretive mapping.
Assume that F := A−1(0) ∩ B−1(0) 6= ∅. Suppose that {xn} is gener-
ated by

(4.6)





x1 = u ∈ E,

yn = xn − µBxn,

zn = yn − µByn,

xn+1 = αnu + βnxn + γn[δJrxn + (1− δ)zn], ∀n ≥ 1,

where δ ∈ (0, 1), µ ∈ (
0, β

K2

]
and {αn}, {βn} and {γn} are sequences

in [0, 1] such that

(C1) αn + βn + γn = 1 for all n ≥ 1;
(C2) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then the sequence {xn} defined by (4.6) converges strongly to x̄ =
QF u, where QF is a sunny nonexpansive retraction of E onto F.
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