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ON THE SIZE OF THE SET WHERE A
MEROMORPHIC FUNCTION IS LARGE

Ki-Ho Kwon

ABSTRACT. In this paper, we investigate the extent of the set on
which the modulus of a meromorphic function is lower bounded by a
term related to some Nevanlinna Theory functionals. A. I. Shcherba
estimate the size of the set on which the modulus of an entire func-
tion is lower bounded by 1. Our theorem in this paper shows that
the same result holds in the case that the lower bound is replaced
by IT(r, f), 0 <1 < 1, which improves Shcherba’s result. We also
give a similar estimation for meromorphic functions.

1. Introduction and statements of results

Let f be a nonconstant meromorphic function on |z| < ar for some
a>1and 0 < r < oo. In this paper, for 0 <[ < 1, we investigate the
set

E(r 1, f)=1{0 € ]0,27) : log |f(reie)] > U[m(r, f)—(1+log o) n(ar, oo, f)]}

where m(r, f) = 5= 027r log® | f(re®?)|df and n(t, oo, f) denote the num-
ber of poles of f in |z| < t(see [6]). If f is analytic in |z| < r, then we
rewrite

E(r,1,f) ={0 € [0,2) : log | f(re”)| = IT(r, f)}
where T'(r, f) = m(r, f) is the Nevanlinna characteristic of f(z). In

particular, if f is analytic in |z| <r and [ = 0, we denote

E(r,f) = E(r,0, f) = {0 € [0,2n) : | f(re?)] > 1}.
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Many results related to the lower bounds of limsup,_, . |E(r, [, f)], called
“the spread of f”, can be found in [1], [2], [3] and [4] etc., where |E]|
denotes the Lebesgue measure of the set F.

On the other hand, less attention have been given to obtain the lower
bound for liminf, .. |E(r 1, f)|. A. A. Gol’dberg [5] has constructed
examples of entire functions f(z) of order p, % < p < o0, such that
liminf, . |E(r, f)] = 0.

In 1990, A. I. Shcherba established a sharp lower bound for the size
of the set E(r, f) in the following

THEOREM 1.1 (Shcherba [8]). Let f(z) be a nonconstant entire func-
tion of a finite order p. Then
log |E
liminf 28 EC OS2
r—00 logr 2
This inequality is best possible in the following sense:

THEOREM 1.2 (Shcherba [8]). Let p € [0, 00) be an arbitrary number.
Then there exists an entire function f(z) of order p for which

i inf BB P
r—00 log r 2

We improve Theorem 1.1 by proving

THEOREM 1.3. Let f(z) be a nonconstant entire function of a finite

order p. Then
log | E(r,(
r—00 log r 2
foralll, 0 <[ <1.

Note that if [ = 0 in Theorem 1.3, then the result of Theorem 1.3 is
same as that of Theorem 1.1. Theorem 1.3 is easily deduced from the
following

THEOREM 1.4. Let f(z) be a nonconstant meromorphic function in
|z] <arforl <a<e*and0<r < oco. Suppose that

m(r, f) o (1 —i—lOgOé) n(Oé?”,OO,f) > 1.

Then
2n(1—1)

do(1+log2)y/m(ar, f)+1—1

for alll, 0 <1 < 1, where d,, = 2/3e(/atD),

a—1

[E(r, L ) =
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2. Proofs of Theorems

Let f(z) be an analytic function in |z| < r. Then the maximum
modulus of f(z) on |z| = r is denoted by M(r, f).

LEMMA 2.1. Let f(z) be a nonconstant analytic function in |z| < r.
Then

1—1
m(r,f)
foralll,0 <1< 1.

Proof. Suppose that f(z) is a nonconstant analytic function in |z| < r.
Set E = E(r,l, f) and E° = [0,27) — E. Then

27
mrf) = 5 / log* |f(re™") 8
1 ) )
= %[[E log™ \f(re’g)]dﬁ—l—/Ec log™ ]f(rew)\dﬁ]

L{1Bltog M(r. 1)+ (2n — |BDim(r, )L

IA

Hence

~ log M(r, f) —Im(r, f) 10%%{(}2)}‘) 1l

B> 2= Om( f) :2[ 1-1 ]

O

LeEMMA 2.2 (Kwon [7]). Let f(z) be a nonconstant analytic function
in|z| <ar,1<a<e? andlet |f(0)| > 1. Then

log M (r, f) < da\/m(r, fim(ar, f)

where d.. — 4V3a(/a+1)
« oa—1 .

LEMMA 2.3. Let {b,} be the set of poles of a meromorphic function
f, and let o
R%2 — b,z

7= R

[bn|<R
with R = ar and z = re’. Then we have

1 2w ]
m(r, B) = %/0 log™ |B(re)|df < (14 log o) n(ar, oo, f).
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Proof. Let b € (0, R] be a real number and let 0 < # < 7. Then

2

R*—bz| (ar—%cos@)—i%sinQQ
R(z—10b)| | (rcosf —b)+irsinf
_ (ar— 2 cosf)? + (Lsin6)? (o) + (£)2 — 2br cos 6
~ (rcos®—b)2+ (rsinf)2  r2 4+ b2 — 2brcosf
_ (ar+2)2 = 2br(1 4 cos ) - (ar + 2)?
(r+0)% =2br(1+cosf) = (r+b)? — 4brcos® ¢
_ (ar + 2)? - o?
- (r+b)(r+b—2\/acosg)_1—%%7(305%
< oo
= 0 . 9
I—cos5 2 sin? 1

Hence we deduce that, for 0 < 0 < 7,

R? — bz - a can
R(Z—b) o \/gsing - 6
Therefore we obtain
R? — bz

1 27
_ loo™
o /0 o

If b,, is a complex number satisfying |b,| = b, then we claim that

1 2 1 2m
—/ log™ do = —/ log™
2m J, 2 Jo

In fact, if b, = be’® and z = re?, then we have

1 i
9 < —/ logt 240 = 1 + log av.
0

R(z—b) T 7

R? — bz
R(z =)

R?— b,z

o=t do.

R? — EZ ar — Leioeif ar — Lei(0—6o)
R(z —b,)| | rei® —befo | | pei@=00) —p |
Recall that
R*—bz| |ar— beif
R(z—b) | rei? —b |
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Hence our claim is proved by a change of variable in the integration.
Thus we conclude that

m(r, B) ZQ?T/

b <R

df < (1 +loga) n(ar, oo, f).

b)
O

Proof of Theorem 1.4. Let f (z) be a nonconstant meromorphic func-
tion in |z| < ar for 1 < a < 2. Suppose that

(1) m(r, f) — (1 +log o) n(ar, oo, f) > 1.

Let b, be the set of poles of f. Now we define functions B(z) and ¢g(z)
as

R? — b,z
B(z) = -
<n R(z —by)
with R = ar, and
_ [
Note that g(z) is analytic in |z| < R, and
(2) m(r,g) = m(r, f) = (1 +loga) n(ar, oo, f)
by Lemma 2.3. Hence it follows from (1), (2) and Lemma 2.1 that
(3) m(r,g) =1
and
4 E(r,1,9)| > 2 .
(4) |(T>,g)\_ﬂwy)_l-
m(r,9)
If |g(0)| > 1, then we deduce from (4) and Lemma 2.2 that
2m(1 =1
®) 51, 2 —T
da |:m((a,r7g):| ’ - l
m(r,g)

for all [, 0 <1 < 1, where d,, = 2¥alyatl)

Now, suppose that |g(0 )| < 1. Then we can choose a number ¢ with
le| < 1 such that |g(0) + ¢| = 1. We set h(z) = g(2) + ¢, so that h(z)
satisfies all the hypotheses of Lemma 2.2. Therefore we get

(6) log M(r,h) < dour/m(r, h)m(ar, h),
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where d, = m‘/fﬂ). It follows from (3) and (6) that

o—

log M(r,g) — 1 log M(r, g+ ¢) < do/m(r, g+ c)m(ar,g + ¢)
4o/ (. 9) + log 2lfm{ar, g) + log 2]
do/(1+log 2)?m(r, g)m(ar, g),

since m(r,g) > 1. Hence we have

(7) log M (r, g) < do(1 +log 2)\/m(r, g)m(ar, g) + 1.

It follows from (4) and (7) that

VAN VAN VAN

2n(1—1)

do(1 + log 2)[ a1/ 4 1 — |

(8) |E(r,l,9)| >

for all I, 0 <1 < 1. By comparing (5) and (8), it is easy to see that (8)
is always valid regardless of the value of |g(0)].
In addition, since |f(2)| = |g(z)| on |z| = R, and |f(z)] > |g(2)| on
|z| =r < R,
and
{0 €10,2m) : log | f(re”| = Im(r, 9)} 2 {0 € [0,27) : log|g(re”| = Im(r, 9)},
which implies that
(10) |E(r, L, N = |E(r,1, )|
Thus we conclude from (3), (8), (9) and (10) that
2n(1—1)

do(1+1og2)y/m(ar, f)+1—1

which proves the theorem. Il

[E(r, L, f)] =

Proof of Theorem 1.3. If f(z) is a polynomial, then the proof is triv-
ial. Hence we assume that f(z) is a transcendental entire function of
order p. Then f(z) satisfies all the hypotheses of Theorem 1.4, since
n(ar,00, f) = 0 and m(r, f) — 0o as r — oo. Thus we have

2n(1—=1)

do(1+1og2)y/m(ar, f)+1—1

[E(r, L, f)] =

foralll,0<I[<1.
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Furthermore, if € > 0 is given, then the definition of order gives
m(ar, f) < rP*e

for all sufficiently large r. Therefore we finally get that
log|[E(r,l,f)l _ p

liminf =———-= > —=/
T—00 log r 2
which proves the theorem. Il
3. Example

Let f(z) be a meromorphic function in the complex plane of order p
and lower order A > 0. Suppose that

1
(1) lim sup 287U )y
r—00 logr

Then we have
g B L)

2 —
r—00 log r

N

forall [, 0 <[l < 1.

Proof. Let f(z) have lower order A > 0 and let its poles satisfy (11).
Then we can choose €1, €5 and €3 such that 0 < g1 < &9 < e3 < A and

(12) n(r, 00, f) < r* s,

T(r, f)=m(r, f) + N(r, f) > r*—=,
and hence
(13) m(r, f) > 72,

for all sufficiently large r, since N(r,f) < n(r,o0, f)logr. Thus we
deduce from (12) and (13) that, for given a > 1,

m(r, f) = (1 +loga) n(ar, 00, f) > 1
for all sufficiently large r. Therefore it follows from Theorem 1.3 that

i inf 2&IEC LA S P
r—00 log r 2

foralll,0<1[<1. O
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