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MULTIPLICITY RESULTS FOR SOME FOURTH ORDER

ELLIPTIC EQUATIONS

Yinghua Jin∗ and Q-Heung Choi

Abstract. In this paper we consider the Dirichlet problem for an
fourth order elliptic equation on a open set in RN . By using vari-
ational methods we obtain the multiplicity of nontrivial weak solu-
tions for the fourth order elliptic equation.

1. Introduction

In recent years, multiplicity of solutions for fourth order elliptic equa-
tions have been widely studied. In [5] the authors Lazer and McKenna
proved the existence of 2k − 1 solutions when Ω ⊂ R is an interval and
b > λk(λk − c), for the assumption of f(x, u) = b(u + 1)+ − 1 by global
bifurcation method, for the same f(x, u).Tarantello [10] showed by de-
gree theory that if b ≥ λ1(λ1− c), then fourth order elliptic equation has
a solution u such that u(x) < 0 in Ω, for f(x, u) = (u + 1)+ − 1 when
c < λ1. Choi and Jung [2] showed that fourth order elliptic equation has
only the trivial solution when λk < c < λk+1 and the nonlinear term is
bu+(b < λ1(λ1− c)). Micheletti and Pistoia [5] showed that fourth order
elliptic equation has at least two solutions when c > λ1 and the nonlinear
term is b[(u+1)+−1](b < λ1(λ1−c)). The other authors in [1,3,4,6,7,8,9]
studied the existence of multilple solutions of the semilinear problems
with Dirichlet boundary condition.
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In this paper we will study fourth order elliptic problem, when the
nonlinearity is replaced by a more general function αu + f(u), by using
a variational method.

2. Preliminary results

We consider the problem of the multiplicity of solutions of the fourth
order elliptic equation:

∆2u + c∆u = αu + f(u) in Ω,

u = 0, ∆u = 0 on ∂Ω,
(2.1)

where Ω is a smooth open boundary set in RN , f : Ω × R → R is
a Caratheodory’s function and c, α ∈ R. We will consider the Hilber
space H = H2(Ω) ∩ H1

0 (Ω) and for every u and v in H we will set
(u, v)H =

∫
∆u∆v +

∫ ∇u∇v. Then H is a closed subspace of H2(Ω).
In order to study problem (2.1), we will follow a variational approach.

Consider

I(u) :=
1

2

(∫
(∆u)2 − c

∫
|∇u|2

)
− α

2

∫
u2 +

∫
F (u)(2.2)

where F (u) =
∫ u

0
f(σ)dσ.

Let C1(H, R) denote the set of all functionals which are Fréchet dif-
ferentiable and whose Fréchet derivatives are continuous on H. It is
easy to prove that I is a C1 functional and its critical points are weak
solutions of problem (2.1). We respectively denote by (Λk)k∈N and by
(ek)k∈N the eigenvalues and the eigenfunctions of the problem

∆2u + c∆u = Λu in Ω,

u = 0, ∆u = 0 on ∂Ω.
(2.3)

Linking Theorem is of importance in critical point theory. Let E be a
Banach space. We introduce the set Φ of mapping Γ(t) ∈ C(E×[0, 1], E)
with the following properties:

• (a) for each t ∈ [0, 1), Γ(t) is a homeomorphism of E onto itself
and Γ(t)−1 is continuous on E × [0, 1)

• (b) Γ(0) = I
• (c) for each Γ(t) ∈ Φ there is a u0 ∈ E such that Γ(1)u = u0 for

all u ∈ E and Γ(t)u → u0 as t → 1 uniformly on bounded subsets
of E.



Multiplicity results for some fourth order elliptic equations 491

A subset A of E links a subset B of E if A ∩ B = ∅ and for each
Γ(t) ∈ Φ, there is a t ∈ (0, 1] such that Γ(t)A ∩ B 6= ∅. We define the
following sets.

• Sρ(Y ) = {x ∈ Y | ‖x‖ = ρ},
• ∆ρ(k, s) = {u + v|u ∈ Hk, v ∈ span(ek, · · · es), ‖u + v‖ ≤ ρ},
• Σρ(k, s) = {u + v|u ∈ Hk, v ∈ span(ek, · · · es), ‖u + v‖ = ρ} ∪ {v |

u ∈ Hk, ‖u‖ ≤ ρ}.
Then the set Sρ(Hs) and Σρ(k, s) is linking set.

We will use the following assumptions:

• (f1) F (u)
u2 → 0 as |u| → ∞ uniformly for x ∈ Ω;

• (f2) lim
‖u‖H→0

∫ F (u)
‖u‖2H

= 0:

The following is the main result of this paper.

Theorem 2.1. Assume that (f1),(f2). Suppose that Λk ≤ α < Λk+1

and c < Λ1. Then there exists a nontrivial critical point u of I which is
a forcing solution of problem (2.1).

Theorem 2.2. Assume that (f1),(f2). Suppose that for a given k in
N one has Λk < Λk+1 ≤ Λ1. Then there exist positive constant δ such
that if Λk−δ < α < Λk, problem (2.1) has at least 2 nontrivial solutions.

3. Proof of Theorem 2.1 and Theorem 2.2

Definition 3.1. We say G satisfies the (PS) condition if any sequence
{uk} ⊂ H for which G(uk) is bounded and G′(uk) → 0 as k → ∞
possesses a convergent subsequence.

The (PS) condition is a convenient way to build some “compactness”
into the functional G. Indeed observe that (PS) implies that Kc ≡ {u ∈
H | G(u) = c and G′(u) = 0}, i.e. the set of critical points having
critical value c, is compact for any c ∈ R. In this problem the functional
I satisfies the (PS) conditions.

Lemma 3.2. Assume that α 6= Λi.Then I(u) satisfies the (PS)c con-
dition for every c ∈ R.

Proof. Let (uk) be a sequence in H with DI(uk) → 0 and I(uk) → c.
It is enough to show that ||uk|| is bounded, since ∀u ∈ H

(3.1) ∇I(u) = u + i∗[(1 + c)∆u− αu + g(u)].



492 Yinghua Jin and Q-Heung Choi

where i∗ : L2(Ω) → H, the adjoint of the immersion i : H → L2(Ω) is a
compact operator. In fact, if {uk}∞k=1 ⊂ H, then uk converses strongly
in Lk(Ω) By contradiction we suppose that lim

k
‖uk‖H = +∞. Up to a

subsequence we can assume that lim
k

uk

‖uk‖H
= u weakly in H, strongly in

L2(Ω) and pointwise in Ω. Note that dividing I(un) by ||un|| and passing
to the limit, we get

∫
u−dx = 0, and so u ≥ 0 a.e. in Ω and u 6≡ 0. On

the other hand from ∇I(uk) → 0 in H, we get

lim
k→∞

∇I(uk)

‖uk‖H

= 0 as n →∞.

So the bounded sequence lim{ uk

‖uk‖H
}k∈N converges strongly in H. Hence

u− i∗[(1 + c)∆u− αu] = 0.

Here i∗ : L2(Ω) → H is a compact operator. This implies that u ≥ 0 is
a nontrivial solution of

(3.2) ∆2u + c∆u = αu,

which contradicts to the equation (3.2) (α 6= Λi(c), α 6= 0) that has only
the trivial solution. So we discovered that {uk}∞k=1 is bounded in H,
hence there exists a subsequence {ukj}∞kj=1 and u ∈ H with ukj → u in
H.

Proof of Theorem 2.1. Since I(u) ≤ Λk−α
2

∫
u2dx for ∀u in Hk and

I(0) = 0. So we have sup
Hk

I(u) = 0. For any ε > 0 there exists ρ > 0 such

that, if ‖u‖ ≤ ρ,

I(u) ≥ C‖u‖2 − ε‖u‖2,

where

C = inf
n≥k+1

λ2
n − cλn − α

λ2
n

.

So we have

lim
ρ→0

1

ρ2
inf

u∈H⊥
k ,‖u‖=ρ

i(u) ≥ C.

This implies that there exist R and ρ such that R > ρ > 0 and

inf
Sk(ρ)

I(u) > sup
Σ(Hk,e1)

I(u).
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In this way the hypotheses of the Linking theorem are satisfied, so there
exists a critical point u such that

0 < inf
sk(ρ)

I(u) < I(u) < I(u)
∆(Hk,e1)

.

Lemma 3.3. Suppose that for given s and k in N Λk < Λk+1 ≤ . . . ≤
Λs < Λs+1 ≤ Λ1 and (f2), then

sup
‖u‖=ρ,u∈Hs

I(u) < 0.

Proof. For sufficiently small ‖u‖ we have,

I(u) ≤ 1

2

(∫
(∆u)2 − c|∇u|2

)
− 1

2

∫
αu2 + O‖u‖

≤ 1

2
(Λs(c)u

2 − α)

∫
u2 + O‖u‖

for some positive constant α > Λs(c). The norms ‖ · ‖Hs and ‖ · ‖L2(Ω) in
Hs are equivalent, since dim Hs = s. Condition α > Λs(c) implies that
Λs(c)u

2 − α < 0. So, for small ρ > 0 we have

sup
‖u‖=ρ,u∈Hs

I(u) < 0.

Lemma 3.4. Suppose that for given s and k in N , Λk < Λk+1 ≤ . . . ≤
Λs < Λs+1 ≤ Λ1 and Λk ≤ α < Λs+1, f(1) and set X(k,s) = Hk ⊕ Hs

⊥.
Then for every δ > 0,if Λk + δ ≤ α ≤ Λs+1 − δ,

sup
‖u‖=R,u∈Σρ(k,s)⊂X(k,s)

I(u) < 0.

Proof. Set Kφ = {u ∈ H|u ≥ φ}. There exists ρ > 0 such that, if
u ∈ Kφ ∩ X(k,s), ‖u‖ < ρ, u 6= 0 and Λs ≤ α < Λk+1, then u is not an
upper critical point for Iα on X(s,k).

In fact if ρ is small enough then B(0, ρ) ⊂ Kφ. On the other hand
the unique upper critical point for I on X(k,s) is o, since Λk ≤ α < Λs+1.
So the argument holds for some large ρ > 0.
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Proof of Theorem 2.2. Since Λs ≤ α < Λk+1 and f satisfies (f1),(f2)
by Lemma 3.3 and 3.4 there exist R > ρ > 0 such that

sup
‖u‖=ρ,u∈Hs

I(u) < 0 < sup
‖u‖=R,u∈Σρ(k,s)⊂X(k,s)

I(u),

where Σρ(k, s) = {u + v|u ∈ Hk, v ∈ span(ek, · · · es), ‖u + v‖ = ρ} ∪ {v |
u ∈ Hs, ‖u‖ ≤ ρ}. By the Variational Linking Theorem I(u) has at
least two nonzero critical values c1, c2 such as

c1 ≤ sup
‖u‖=ρ,u∈Hs

I(u) < 0 < sup
‖u‖=R,u∈Σρ(k,s)⊂X(k,s)

I(u) ≤ c2.

Therefore, (2.1) has at least two nontrivial solutions. This implies that
(2.1) has at least three solutions.

4. Variational setting

We introduce a variational linking theorem.

Theorem 4.1 (a Variation of Linking). Let X be a Hilbert space
which is topological direct sum of the subspaces X1, X2. Let f ∈
C1(X, R). Moreover assume

(a) dimX1 < +∞,
(b) there exist ρ > 0, R > 0 and e ∈ X1, e 6= 0 such that ρ < R and

supSρ(X1) f < infΣR(e,X2) f ,

(c)−∞ < a = inf∆R(e,X2) f ,
(d) (PS)c condition holds for any c ∈ [a, b] where b = supBρ(X1) f .

Then there exist at least two critical levels c1 and c2 for the functional
f such that

inf
∆R(e,X2)

f ≤ c1 ≤ sup
Sρ(X1)

f < inf
ΣR(e,X2)

f ≤ c2 ≤ sup
Bρ(X1)

f.

Let 0 < δ < R, e1 ∈ M1 moreover, consider

QR = {se1 + u : u ∈ M2, s ≥ 0‖se1 + u‖ ≤ R},
Sδ = Bδ ∩M1,

then ∂QR links ∂Sδ.
We recall a theorem of existence of two critical levels for a functional

which is a linking theorem on product space.
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Theorem 4.2. Suppose

sup
∂Sδ×V

I < inf
∂QR×V

I

inf
QR×V

I > −∞, sup
Sδ×V

I < +∞,

and that I satisfies (PS)∗c with respect to X, for every

c ∈ [ inf
QR×V

I, sup
Sδ×V

I].

Then I admits at least two distinct critical values c1, c2 such that

inf
QR×V

I ≤ c1 ≤ sup
∂Sδ×V

I < inf
∂QR×V

I ≤ c2 ≤ sup
Sδ×V

I,

and at least 2 + 2 cuplength(V ) distinct critical points.
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