# MULTIPLICITY RESULTS FOR SOME FOURTH ORDER ELLIPTIC EQUATIONS 

Yinghua Jin* and Q-Heung Choi


#### Abstract

In this paper we consider the Dirichlet problem for an fourth order elliptic equation on a open set in $R^{N}$. By using variational methods we obtain the multiplicity of nontrivial weak solutions for the fourth order elliptic equation.


## 1. Introduction

In recent years, multiplicity of solutions for fourth order elliptic equations have been widely studied. In [5] the authors Lazer and McKenna proved the existence of $2 k-1$ solutions when $\Omega \subset R$ is an interval and $b>\lambda_{k}\left(\lambda_{k}-c\right)$, for the assumption of $f(x, u)=b(u+1)^{+}-1$ by global bifurcation method, for the same $f(x, u)$.Tarantello [10] showed by degree theory that if $b \geq \lambda_{1}\left(\lambda_{1}-c\right)$, then fourth order elliptic equation has a solution $u$ such that $u(x)<0$ in $\Omega$, for $f(x, u)=(u+1)^{+}-1$ when $c<\lambda_{1}$. Choi and Jung [2] showed that fourth order elliptic equation has only the trivial solution when $\lambda_{k}<c<\lambda_{k+1}$ and the nonlinear term is $b u^{+}\left(b<\lambda_{1}\left(\lambda_{1}-c\right)\right)$. Micheletti and Pistoia [5] showed that fourth order elliptic equation has at least two solutions when $c>\lambda_{1}$ and the nonlinear term is $b\left[(u+1)^{+}-1\right]\left(b<\lambda_{1}\left(\lambda_{1}-c\right)\right)$. The other authors in $[1,3,4,6,7,8,9]$ studied the existence of multilple solutions of the semilinear problems with Dirichlet boundary condition.

Received November 16, 2010. Revised December 13, 2010. Accepted December 15, 2010.

2000 Mathematics Subject Classification: 35B38, 35D30.
Key words and phrases: Dirichlet boundary condition, linking theorem, eigenvalue.

This work was Supported by PIRT of Jiangnan University.
*Corresponding author.

In this paper we will study fourth order elliptic problem, when the nonlinearity is replaced by a more general function $\alpha u+f(u)$, by using a variational method.

## 2. Preliminary results

We consider the problem of the multiplicity of solutions of the fourth order elliptic equation:

$$
\begin{align*}
& \Delta^{2} u+c \Delta u=\alpha u+f(u) \quad \text { in } \Omega, \\
& u=0, \quad \Delta u=0 \quad \text { on } \partial \Omega, \tag{2.1}
\end{align*}
$$

where $\Omega$ is a smooth open boundary set in $R^{N}, f: \Omega \times R \rightarrow R$ is a Caratheodory's function and $c, \alpha \in R$. We will consider the Hilber space $H=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ and for every $u$ and $v$ in $H$ we will set $(u, v)_{H}=\int \Delta u \Delta v+\int \nabla u \nabla v$. Then $H$ is a closed subspace of $H^{2}(\Omega)$.

In order to study problem (2.1), we will follow a variational approach. Consider

$$
\begin{equation*}
I(u):=\frac{1}{2}\left(\int(\Delta u)^{2}-c \int|\nabla u|^{2}\right)-\frac{\alpha}{2} \int u^{2}+\int F(u) \tag{2.2}
\end{equation*}
$$

where $F(u)=\int_{0}^{u} f(\sigma) d \sigma$.
Let $C^{1}(H, R)$ denote the set of all functionals which are Fréchet differentiable and whose Fréchet derivatives are continuous on $H$. It is easy to prove that $I$ is a $C^{1}$ functional and its critical points are weak solutions of problem (2.1). We respectively denote by $\left(\Lambda_{k}\right)_{k \in N}$ and by $\left(e_{k}\right)_{k \in N}$ the eigenvalues and the eigenfunctions of the problem

$$
\begin{array}{ll}
\Delta^{2} u+c \Delta u=\Lambda u & \text { in } \Omega, \\
u=0, \Delta u=0 & \text { on } \partial \Omega . \tag{2.3}
\end{array}
$$

Linking Theorem is of importance in critical point theory. Let $E$ be a Banach space. We introduce the set $\Phi$ of mapping $\Gamma(t) \in C(E \times[0,1], E)$ with the following properties:

- (a) for each $t \in[0,1), \Gamma(t)$ is a homeomorphism of $E$ onto itself and $\Gamma(t)^{-1}$ is continuous on $E \times[0,1)$
- (b) $\Gamma(0)=I$
- (c) for each $\Gamma(t) \in \Phi$ there is a $u_{0} \in E$ such that $\Gamma(1) u=u_{0}$ for all $u \in E$ and $\Gamma(t) u \rightarrow u_{0}$ as $t \rightarrow 1$ uniformly on bounded subsets of $E$.

A subset $A$ of $E$ links a subset $B$ of $E$ if $A \cap B=\emptyset$ and for each $\Gamma(t) \in \Phi$, there is a $t \in(0,1]$ such that $\Gamma(t) A \cap B \neq \emptyset$. We define the following sets.

- $S_{\rho}(Y)=\{x \in Y \mid\|x\|=\rho\}$,
- $\Delta_{\rho}(k, s)=\left\{u+v \mid u \in H_{k}, v \in \operatorname{span}\left(e_{k}, \cdots e_{s}\right),\|u+v\| \leq \rho\right\}$,
- $\Sigma_{\rho}(k, s)=\left\{u+v \mid u \in H_{k}, v \in \operatorname{span}\left(e_{k}, \cdots e_{s}\right),\|u+v\|=\rho\right\} \cup\{v \mid$ $\left.u \in H_{k},\|u\| \leq \rho\right\}$.
Then the set $S_{\rho}\left(H_{s}\right)$ and $\Sigma_{\rho}(k, s)$ is linking set.
We will use the following assumptions:
- (f1) $\frac{F(u)}{u^{2}} \rightarrow 0$ as $|u| \rightarrow \infty$ uniformly for $x \in \Omega$;
- (f2) $\lim _{\|u\|_{H} \rightarrow 0} \int \frac{F(u)}{\|u\|^{2} H}=0$ :

The following is the main result of this paper.
Theorem 2.1. Assume that (f1),(f2). Suppose that $\Lambda_{k} \leq \alpha<\Lambda_{k+1}$ and $c<\Lambda_{1}$. Then there exists a nontrivial critical point $u$ of $I$ which is a forcing solution of problem (2.1).

Theorem 2.2. Assume that (f1),(f2). Suppose that for a given $k$ in $N$ one has $\Lambda_{k}<\Lambda_{k+1} \leq \Lambda_{1}$. Then there exist positive constant $\delta$ such that if $\Lambda_{k}-\delta<\alpha<\Lambda_{k}$, problem (2.1) has at least 2 nontrivial solutions.

## 3. Proof of Theorem 2.1 and Theorem 2.2

Definition 3.1. We say $G$ satisfies the (PS) condition if any sequence $\left\{u_{k}\right\} \subset H$ for which $G\left(u_{k}\right)$ is bounded and $G^{\prime}\left(u_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$ possesses a convergent subsequence.

The $(P S)$ condition is a convenient way to build some "compactness" into the functional $G$. Indeed observe that $(P S)$ implies that $K_{c} \equiv\{u \in$ $H \mid G(u)=c$ and $\left.G^{\prime}(u)=0\right\}$, i.e. the set of critical points having critical value $c$, is compact for any $c \in R$. In this problem the functional $I$ satisfies the $(P S)$ conditions.

Lemma 3.2. Assume that $\alpha \neq \Lambda_{i}$. Then $I(u)$ satisfies the $(P S)_{c}$ condition for every $c \in R$.

Proof. Let $\left(u_{k}\right)$ be a sequence in $H$ with $D I\left(u_{k}\right) \rightarrow 0$ and $I\left(u_{k}\right) \rightarrow c$. It is enough to show that $\left\|u_{k}\right\|$ is bounded, since $\forall u \in H$

$$
\begin{equation*}
\nabla I(u)=u+i^{*}[(1+c) \Delta u-\alpha u+g(u)] . \tag{3.1}
\end{equation*}
$$

where $i^{*}: L^{2}(\Omega) \rightarrow H$, the adjoint of the immersion $i: H \rightarrow L^{2}(\Omega)$ is a compact operator. In fact, if $\left\{u_{k}\right\}_{k=1}^{\infty} \subset H$, then $u_{k}$ converses strongly in $L^{k}(\Omega)$ By contradiction we suppose that $\lim _{k}\left\|u_{k}\right\|_{H}=+\infty$. Up to a subsequence we can assume that $\lim _{k} \frac{u_{k}}{\left\|u_{k}\right\|_{H}}=u$ weakly in $H$, strongly in $L^{2}(\Omega)$ and pointwise in $\Omega$. Note that dividing $I\left(u_{n}\right)$ by $\left\|u_{n}\right\|$ and passing to the limit, we get $\int u^{-} d x=0$, and so $u \geq 0$ a.e. in $\Omega$ and $u \not \equiv 0$. On the other hand from $\nabla I\left(u_{k}\right) \rightarrow 0$ in $H$, we get

$$
\lim _{k \rightarrow \infty} \frac{\nabla I\left(u_{k}\right)}{\left\|u_{k}\right\|_{H}}=0 \text { as } n \rightarrow \infty .
$$

So the bounded sequence $\lim \left\{\frac{u_{k}}{\left\|u_{k}\right\|_{H}}\right\}_{k \in N}$ converges strongly in $H$. Hence

$$
u-i^{*}[(1+c) \Delta u-\alpha u]=0 .
$$

Here $i^{*}: L^{2}(\Omega) \rightarrow H$ is a compact operator. This implies that $u \geq 0$ is a nontrivial solution of

$$
\begin{equation*}
\Delta^{2} u+c \Delta u=\alpha u, \tag{3.2}
\end{equation*}
$$

which contradicts to the equation (3.2) $\left(\alpha \neq \Lambda_{i}(c), \alpha \neq 0\right)$ that has only the trivial solution. So we discovered that $\left\{u_{k}\right\}_{k=1}^{\infty}$ is bounded in $H$, hence there exists a subsequence $\left\{u_{k j}\right\}_{k j=1}^{\infty}$ and $u \in H$ with $u_{k j} \rightarrow u$ in $H$.

Proof of Theorem 2.1. Since $I(u) \leq \frac{\Lambda_{k}-\alpha}{2} \int u^{2} d x$ for $\forall u$ in $H_{k}$ and $I(0)=0$. So we have $\sup _{H_{k}} I(u)=0$. For any $\epsilon>0$ there exists $\rho>0$ such that, if $\|u\| \leq \rho$,

$$
I(u) \geq C\|u\|^{2}-\epsilon\|u\|^{2},
$$

where

$$
C=\inf _{n \geq k+1} \frac{\lambda_{n}^{2}-c \lambda_{n}-\alpha}{\lambda_{n}^{2}} .
$$

So we have

$$
\lim _{\rho \rightarrow 0} \frac{1}{\rho^{2}} \inf _{u \in H_{k}^{\perp},\|u\|=\rho} i(u) \geq C .
$$

This implies that there exist $R$ and $\rho$ such that $R>\rho>0$ and

$$
\inf _{S_{k}(\rho)} I(u)>\sup _{\Sigma\left(H_{k}, e_{1}\right)} I(u) .
$$

In this way the hypotheses of the Linking theorem are satisfied, so there exists a critical point $u$ such that

$$
0<\inf _{s_{k}(\rho)} I(u)<I(u)<\underset{\Delta\left(H_{k}, e_{1}\right)}{I(u)} .
$$

Lemma 3.3. Suppose that for given $s$ and $k$ in $N \Lambda_{k}<\Lambda_{k+1} \leq \ldots \leq$ $\Lambda_{s}<\Lambda_{s+1} \leq \Lambda_{1}$ and (f2), then

$$
\sup _{\|u\|=\rho, u \in H_{s}} I(u)<0 .
$$

Proof. For sufficiently small $\|u\|$ we have,

$$
\begin{aligned}
I(u) & \leq \frac{1}{2}\left(\int(\Delta u)^{2}-c|\nabla u|^{2}\right)-\frac{1}{2} \int \alpha u^{2}+O\|u\| \\
& \leq \frac{1}{2}\left(\Lambda_{s}(c) u^{2}-\alpha\right) \int u^{2}+O\|u\|
\end{aligned}
$$

for some positive constant $\alpha>\Lambda_{s}(c)$. The norms $\|\cdot\|_{H_{s}}$ and $\|\cdot\|_{L^{2}(\Omega)}$ in $H_{s}$ are equivalent, since $\operatorname{dim} H_{s}=s$. Condition $\alpha>\Lambda_{s}(c)$ implies that $\Lambda_{s}(c) u^{2}-\alpha<0$. So, for small $\rho>0$ we have

$$
\sup _{\|u\|=\rho, u \in H_{s}} I(u)<0
$$

Lemma 3.4. Suppose that for given $s$ and $k$ in $N, \Lambda_{k}<\Lambda_{k+1} \leq \ldots \leq$ $\Lambda_{s}<\Lambda_{s+1} \leq \Lambda_{1}$ and $\Lambda_{k} \leq \alpha<\Lambda_{s+1}, f(1)$ and set $X_{(k, s)}=H_{k} \oplus H_{s}{ }^{\perp}$. Then for every $\delta>0$, if $\Lambda_{k}+\delta \leq \alpha \leq \Lambda_{s+1}-\delta$,

$$
\sup _{\|u\|=R, u \in \Sigma_{\rho(k, s)} \subset X_{(k, s)}} I(u)<0 .
$$

Proof. Set $K_{\phi}=\{u \in H \mid u \geq \phi\}$. There exists $\rho>0$ such that, if $u \in K_{\phi} \cap X_{(k, s)},\|u\|<\rho, u \neq 0$ and $\Lambda_{s} \leq \alpha<\Lambda_{k+1}$, then $u$ is not an upper critical point for $I_{\alpha}$ on $X_{(s, k)}$.

In fact if $\rho$ is small enough then $B(0, \rho) \subset K_{\phi}$. On the other hand the unique upper critical point for $I$ on $X_{(k, s)}$ is o, since $\Lambda_{k} \leq \alpha<\Lambda_{s+1}$. So the argument holds for some large $\rho>0$.

Proof of Theorem 2.2. Since $\Lambda_{s} \leq \alpha<\Lambda_{k+1}$ and $f$ satisfies (f1),(f2) by Lemma 3.3 and 3.4 there exist $R>\rho>0$ such that

$$
\sup _{\|u\|=\rho, u \in H_{s}} I(u)<0<\sup _{\|u\|=R, u \in \Sigma_{\rho(k, s)} \subset X_{(k, s)}} I(u),
$$

where $\Sigma_{\rho}(k, s)=\left\{u+v \mid u \in H_{k}, v \in \operatorname{span}\left(e_{k}, \cdots e_{s}\right),\|u+v\|=\rho\right\} \cup\{v \mid$ $\left.u \in H_{s},\|u\| \leq \rho\right\}$. By the Variational Linking Theorem $I(u)$ has at least two nonzero critical values $c_{1}, c_{2}$ such as

$$
c_{1} \leq \sup _{\|u\|=\rho, u \in H_{s}} I(u)<0<\sup _{\|u\|=R, u \in \Sigma_{\rho(k, s)} \subset X_{(k, s)}} I(u) \leq c_{2} .
$$

Therefore, (2.1) has at least two nontrivial solutions. This implies that (2.1) has at least three solutions.

## 4. Variational setting

We introduce a variational linking theorem.
Theorem 4.1 (a Variation of Linking). Let $X$ be a Hilbert space which is topological direct sum of the subspaces $X_{1}, X_{2}$. Let $f \in$ $C^{1}(X, R)$. Moreover assume
(a) $\operatorname{dim} X_{1}<+\infty$,
(b) there exist $\rho>0, R>0$ and $e \in X_{1}, e \neq 0$ such that $\rho<R$ and $\sup _{S_{\rho}\left(X_{1}\right)} f<\inf _{\Sigma_{R}\left(e, X_{2}\right)} f$,
(c) $-\infty<a=\inf _{\Delta_{R}\left(e, X_{2}\right)} f$,
(d) $(P S)_{c}$ condition holds for any $c \in[a, b]$ where $b=\sup _{B_{\rho}\left(X_{1}\right)} f$.

Then there exist at least two critical levels $c_{1}$ and $c_{2}$ for the functional $f$ such that

$$
\inf _{\Delta_{R}\left(e, X_{2}\right)} f \leq c_{1} \leq \sup _{S_{\rho}\left(X_{1}\right)} f<\inf _{\Sigma_{R}\left(e, X_{2}\right)} f \leq c_{2} \leq \sup _{B_{\rho}\left(X_{1}\right)} f .
$$

Let $0<\delta<R, e_{1} \in M_{1}$ moreover, consider

$$
\begin{aligned}
& Q_{R}=\left\{s e_{1}+u: u \in M_{2}, s \geq 0\left\|s e_{1}+u\right\| \leq R\right\}, \\
& S_{\delta}=B_{\delta} \cap M_{1},
\end{aligned}
$$

then $\partial Q_{R}$ links $\partial S_{\delta}$.
We recall a theorem of existence of two critical levels for a functional which is a linking theorem on product space.

## Theorem 4.2. Suppose

$$
\begin{gathered}
\sup _{\partial S_{\delta} \times V} I<\inf _{\partial Q_{R} \times V} I \\
\inf _{Q_{R} \times V} I>-\infty, \\
\sup _{S_{\delta} \times V} I<+\infty,
\end{gathered}
$$

and that $I$ satisfies $(P S)_{c}^{*}$ with respect to $X$, for every

$$
c \in\left[\inf _{Q_{R} \times V} I, \sup _{S_{\delta} \times V} I\right] .
$$

Then $I$ admits at least two distinct critical values $c_{1}, c_{2}$ such that

$$
\inf _{Q_{R} \times V} I \leq c_{1} \leq \sup _{\partial S_{\delta} \times V} I<\inf _{\partial Q_{R} \times V} I \leq c_{2} \leq \sup _{S_{\delta} \times V} I
$$

and at least $2+2$ cuplength $(V)$ distinct critical points.

## References

[1] Q.H. Choi and Yinghua Jin, Nonlinearity and nontrivial solutions of fourth order semilinear elliptic equations, Int. J. Appl. Math. Anal. Appl., 29 (2004), 224-234.
[2] Q.H. Choi, T. Jung and P.J. McKenna, The study of a nonlinear suspension bridge equation by a variational reduction method, J. Appl. Anal., 50 (1993), 71-90.
[3] Amir Moradifam, On the critical dimension of a fourth order elliptic problem with negative exponent, J. Differential Equations 248 (2010), 594-616.
[4] Tacksun Jung and Q-Heung Choi, Existence of four solutions of some nonlinear hamiltonian system, Hindawi publishing corporation Boundary value problems (2008).
[5] A.M. Micheletti and A.Pistoia, Multiplicity results for a fourth-order semilinear elliptic problem, Nonlinear Anal., 31(1998), 895-903.
[6] P.J. McKenna and W. Walter, Global bifurcation and a Theorem of Tarantello, J. Math. Anal. Appl. 181 (1994), 648-655.
[7] A.M. Micheletti and C. Saccon, Multiple nontrivial solutions for a floating beam via critical point theory. J. Differential Equations 170 (2001), 157-179.
[8] S. Li and A. Squlkin, Periodic solutions of an asymptotically linear wave equation, Nonlinear Anal. 1 (1993), 211-230.
[9] J.Q. Liu, Free vibrations for an asymmetric beam equation, Nonlinear Anal. 51.
[10] Tarantello G, A note on a semilinear elliptic problem, Differential Integral Equations 5 (1992), 561-566.

School of Sciences
Jiangnan University
1800 Lihu Road, Wuxi
Jiangsu Province, China 214122
E-mail: yinghuaj@empal.com
Department of Mathematics Education
Inha University
Incheon 402-751, Korea
E-mail: qheung@inha.ac.kr

