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CONVERGENCE THEOREMS FOR
DENJOY-PETTIS INTEGRABLE FUZZY MAPPINGS

Chun-Kee Park

Abstract. In this paper, we introduce the Denjoy-Pettis integral
of fuzzy mappings in Banach spaces and obtain some properties of
the Denjoy-Pettis integral of fuzzy mappings and the convergence
theorems for Denjoy-Pettis integrable fuzzy mappings.

1. Introduction

Saks [11] introduced the Denjoy integral of real-valued functions
which is a natural extension of the Lebesgue integral. Gordon [6] intro-
duced the Denjoy-Pettis integral of Banach-valued functions in terms
of the Denjoy integral which is the Denjoy extension of Pettis integral.
Several types of integrals of set-valued mappings were introduced and
studied by Aumann [1], Cascales and Rodriguez [2], Di Piazza and
Musial [3,4], El Amri and Hess [5], Papageoriou [9] and others. In [10]
we introduce the Denjoy-Pettis integral of set-valued mappings and
investigate some properties of the integral and convergence theorems
for set-valued Denjoy-Pettis integrable mappings. Another mathemati-
cians also introduced the integrals of fuzzy mappings in Banach spaces
in terms of the integrals of set-valued mappings. Kaleva [8] introduced
the integral of fuzzy mappings in Rn in terms of the integral of set-
valued mappings in Rn. Xue, Ha and Ma [13], Xue, Wang and Wu
[14] also introduced integrals of fuzzy mappings in Banach spaces in
terms of Aumann-Pettis and Aumann-Bochner integrals of set-valued
mappings.

In this paper, we introduce the Denjoy-Pettis integral of fuzzy map-
pings in Banach spaces and obtain some properties of the Denjoy-Pettis
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integral of fuzzy mappings and the convergence theorems for Denjoy-
Pettis integrable fuzzy mappings.

2. Preliminaries

Throughout this paper, L denotes the family of all Lebesgue mea-
surable subsets of [a, b] and X a Banach space with dual X∗. The
closed unit ball of X∗ is denoted by BX∗ . CL(X) denotes the family
of all nonempty closed subsets of X, C(X) the family of all nonempty
closed convex subsets of X, CB(X) the family of all nonempty closed
bounded convex subsets of X, CWK(X) the family of all nonempty
convex weakly compact subsets of X. Note that if X is reflexive then
CWK(X) = CB(X). For A ⊆ X and x∗ ∈ X∗, let s(x∗, A) =
sup{x∗(x) : x ∈ A}, the support function of A. For closed bounded
subsets A, B of X, let H(A,B) denote the Hausdorff metric of A and
B defined by

H(A,B) = max
(

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
)

,

where d(a,B) = infb∈B ‖a−b‖ and d(b, A) = infa∈A ‖a−b‖. Especially,

H(A,B) = sup
‖x∗‖≤1

|s(x∗, A)− s(x∗, B)|

whenever A,B are convex sets. The number ‖A‖ is defined by ‖A‖ =
H(A, {0}) = sup

x∈A
‖x‖. If A ∈ CB(X) and x∗1, x

∗
2 ∈ X∗, then |s(x∗1, A)−

s(x∗2, A)| ≤ ‖x∗1 − x∗2‖‖A‖. Note that (CWK(X),H) is a complete
metric space.

Let u : X → [0, 1]. We denote [u]r = {x ∈ X : u(x) ≥ r} for
r ∈ (0, 1]. u is called a generalized fuzzy number if for each r ∈ (0, 1],
[u]r ∈ CWK(X) and [u]0 = cl{x ∈ X : u(x) > 0}. Let F(X) de-
note the set of all generalized fuzzy numbers on X. The addition and
scalar multiplication in F(X) are defined according to Zadeh’s exten-
sion principle. For u, v ∈ F(X) and λ ∈ R, [u + v]r = [u]r + [v]r

and [λu]r = λ[u]r for each r ∈ (0, 1]. Hence u + v, λu ∈ F(X). For
u, v ∈ F(X), we define u ≤ v as follows:

u ≤ v if u(x) ≤ v(x) for all x ∈ X.
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For u, v ∈ F(X), u ≤ v if and only if [u]r ⊆ [v]r for each r ∈ (0, 1].
Define D : F(X)×F(X) → [0, +∞] by the equation

D(u, v) = sup
r∈(0,1]

H([u]r, [v]r).

Then D is a metric on F(X). The norm ‖u‖ of u ∈ F(X) is defined
by

‖u‖ = D(u, 0̃) = sup
r∈(0,1]

H([u]r, {0}) = sup
r∈(0,1]

‖[u]r‖, where 0̃ = χ{0}.

A set-valued mapping F : [a, b] → CL(X) is said to be scalarly measur-
able if for every x∗ ∈ X∗, the real-valued function s(x∗, F (·)) is measur-
able. A set-valued mapping F : [a, b] → CL(X) is said to be measurable
if F−1(A) = {t ∈ [a, b] : F (t) ∩ A 6= φ} ∈ L for every A ∈ CL(X). If
F : [a, b] → CL(X) is measurable then F : [a, b] → CL(X) is scalarly
measurable. Let X be a separable Banach space. Then F : [a, b] →
CWK(X) is measurable if and only if F : [a, b] → CWK(X) is scalarly
measurable [5]. f : [a, b] → X is called a selection of F : [a, b] → CL(X)
if f(t) ∈ F (t) for all t ∈ [a, b].

Definition 2.1[7,11]. Let F : [a, b] → X and let t ∈ (a, b). A
vector z in X is called the approximate derivative of F at t if there
exists a measurable set E ⊆ [a, b] that has t as a point of density

such that lim
s→t
s∈E

F (s)− F (t)
s− t

= z. We will write F ′ap(t) = z. A function

f : [a, b] → R is said to be Denjoy integrable on [a, b] if there exists
an ACG function F : [a, b] → R such that F ′ap = f a.e. on [a, b]. In

this case, we write
∫ b

a
f(t)dt = F (b)− F (a). The function f is Denjoy

integrable on a set A ⊆ [a, b] if fχA is Denjoy integrable on [a, b]. In
this case, we write

∫
A

f(t)dt =
∫ b

a
fχA(t)dt.

Definition 2.2[6]. A function f : [a, b] → X is said to be Denjoy-
Pettis integrable or simply DP-integrable on [a, b] if for each x∗ ∈ X∗ the
function x∗f is Denjoy integrable on [a, b] and if for every subinterval
[c, d] of [a, b] there exists a vector x[c,d] ∈ X such that x∗(x[c,d]) =∫ d

c
x∗f(t)dt for all x∗ ∈ X∗. In this case, the vector x[a,b] is called the
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Denjoy-Pettis integral of f on [a, b] and is denoted by (DP )
∫ b

a
f(t)dt.

The function f : [a, b] → X is Denjoy-Pettis integrable on a set A ⊆
[a, b] if the function fχA is Denjoy-Pettis integrable on [a, b]. In this
case, we write (DP )

∫
A

f(t)dt = (DP )
∫ b

a
fχA(t)dt.

Definition 2.3[10]. A set-valued mapping F : [a, b] → CWK(X)
is said to be Denjoy-Pettis integrable or simply DP-integrable on [a, b]
if for each x∗ ∈ X∗, s(x∗, F (·)) is Denjoy integrable on [a, b] and for
every subinterval [c, d] of [a, b] there exists W[c,d] ∈ CWK(X) such
that

s(x∗, W[c,d]) =
∫ d

c

s(x∗, F (t))dt

for each x∗ ∈ X∗. We write W[c,d] = (DP )
∫ d

c
F (t)dt.

3. Results

A mapping F̃ : [a, b] → F(X) is called a fuzzy mapping in a Banach
space X. In this case, F̃ r : [a, b] → CWK(X) defined by F̃ r(t) =
[F̃ (t)]r is a set-valued mapping for each r ∈ (0, 1]. A fuzzy mapping
F̃ : [a, b] → F(X) is said to be measurable (resp., scalarly measurable)
if F̃ r : [a, b] → CWK(X) is measurable (resp., scalarly measurable)
for each r ∈ (0, 1].

Definition 3.1. A fuzzy mapping F̃ : [a, b] → F(X) is said to be
Denjoy-Pettis integrable or simply DP-integrable on [a, b] if for each
subinterval [c, d] of [a, b] there exists u[c,d] ∈ F(X) such that [u[c,d]]r=
(DP )

∫ d

c
F̃ r(t)dt for each r ∈ (0, 1]. In this case, u[c,d] = (DP )

∫ d

c
F̃ (t)dt

is called the Denjoy-Pettis integral of F̃ over [c, d].

Theorem 3.2. Let F̃ : [a, b] → F(X) and G̃ : [a, b] → F(X) be
DP-integrable on [a, b] and λ ≥ 0. Then

(1) F̃ + G̃ is DP-integrable on [a, b] and for each subinterval [c, d]
of [a, b]

(DP )
∫ d

c

{
F̃ (t) + G̃(t)

}
dt = (DP )

∫ d

c

F̃ (t)dt + (DP )
∫ d

c

G̃(t)dt;
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(2) λF̃ is DP-integrable on [a, b] and for each subinterval [c, d] of
[a, b]

(DP )
∫ d

c

λF̃ (t)dt = λ(DP )
∫ d

c

F̃ (t)dt.

Proof. The proof is straightforward.
¤

Theorem 3.3. Let F̃ : [a, b] → F(X) and G̃ : [a, b] → F(X) be

DP-integrable fuzzy mappings. If F̃ (t) ≤ G̃(t) a.e. on [a, b], then for
each subinterval [c, d] of [a, b]

(DP )
∫ d

c

F̃ (t)dt ≤ (DP )
∫ d

c

G̃(t)dt.

Furthermore, if F̃ (t) = G̃(t) a.e. on [a, b], then for each subinterval
[c, d] of [a, b]

(DP )
∫ d

c

F̃ (t)dt = (DP )
∫ d

c

G̃(t)dt.

Proof. Since F̃ : [a, b] → F(X) and G̃ : [a, b] → F(X) are DP-
integrable on [a, b], for each subinterval [c, d] of [a, b] there exist

u[c,d], v[c,d] ∈ F(X) such that [u[c,d]]r = (DP )
∫ d

c
F̃ r(t)dt, [v[c,d]]r =

(DP )
∫ d

c
G̃r(t)dt for each r ∈ (0, 1]. If F̃ (t) ≤ G̃(t) a.e. on [a, b], then

by [12, Theorem 3.4], [u[c,d]]r = (DP )
∫ d

c
F̃ r(t)dt ⊆ (DP )

∫ d

c
G̃r(t)dt =

[v[c,d]]r for each r ∈ (0, 1]. Thus (DP )
∫ d

c
F̃ (t)dt = u[c,d] ≤ v[c,d] =

(DP )
∫ d

c
G̃(t)dt for each subinterval [c, d] of [a, b].

¤

Let X be a separable Banach space. If F̃ : [a, b] → F(X) is DP-
integrable on [a, b], then F̃ : [a, b] → F(X) is measurable on [a, b].

A set-valued mapping F : [a, b] → CL(X) is said to be Denjoy
integrably bounded on [a, b] if there exists a Denjoy integrable function
h on [a, b] such that for each t ∈ [a, b], ‖x‖ ≤ h(t) for all x ∈ F (t). A
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fuzzy mapping F̃ : Ω → F(X) is said to be Denjoy integrably bounded
on [a, b] if there exists a Denjoy integrable function h on [a, b] such
that for each t ∈ [a, b], ‖x‖ ≤ h(t) for all x ∈ F̃ 0(t), where F̃ 0(t) =
cl

(
∪0<r≤1F̃

r(t)
)
.

Theorem 3.4. Let X be a separable Banach space. If F̃ : [a, b] →
F(X) and G̃ : [a, b] → F(X) are Denjoy integrably bounded and DP-

integrable on [a, b], then D(F̃ , G̃) is Denjoy integrable on [a, b] and

D

(
(DP )

∫ b

a

F̃ (t)dt, (DP )
∫ b

a

G̃(t)dt

)
≤

∫ b

a

D(F̃ (t), G̃(t))dt.

Proof. Since F̃ : [a, b] → F(X) and G̃ : [a, b] → F(X) are measur-
able on [a, b], there exist Castaing representations {fr

n} and {gr
n} for

F̃ r and G̃r for each r ∈ (0, 1]. Since fr
n and gr

n are measurable on [a, b]
for all n ∈ N,

H(F̃ r(t), G̃r(t)) = max
(

sup
n≥1

inf
k≥1

‖fr
n(t)− gr

k(t)‖, sup
n≥1

inf
k≥1

‖gr
n(t)− fr

k (t)‖
)

is measurable on [a, b] for each r ∈ (0, 1]. Hence D(F̃ (t), G̃(t)) =
sup
k≥1

H(F̃ rk(t), G̃rk(t)) is measurable on [a, b], where {rk : k ∈ N}
is dense in (0, 1]. Since F̃ : [a, b] → F(X) and G̃ : [a, b] → F(X)
are Denjoy integrably bounded on [a, b], there exist Denjoy integrable
functions h1 and h2 on [a, b] such that for each t ∈ [a, b], ‖x‖ ≤ h1(t)
for all x ∈ F̃ 0(t) and ‖x‖ ≤ h2(t) for all x ∈ G̃0(t). Since h1 and h2 are
nonnegative and Denjoy integrable on [a, b], h1 and h2 are Lebesgue
integrable on [a, b]. Hence we have

D(F̃ (t), G̃(t)) ≤ D(F̃ (t), 0̃) + D(G̃(t), 0̃) ≤ h1(t) + h2(t)

for each t ∈ [a, b]. Therefore D(F̃ , G̃) is Lebesgue integrable and so
Denjoy integrable on [a, b]. By [10, Theorem 3.6], we have

H

(
(DP )

∫ b

a

F̃ r(t)dt, (DP )
∫ b

a

G̃r(t)dt

)
≤

∫ b

a

H(F̃ r(t), G̃r(t))dt
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for each r ∈ (0, 1]. Hence we have

D

(
(DP )

∫ b

a

F̃ (t)dt, (DP )
∫ b

a

G̃(t)dt

)

= sup
r∈(0,1]

H

([
(DP )

∫ b

a

F̃ (t)dt

]r

,

[
(DP )

∫ b

a

G̃(t)dt

]r)

= sup
r∈(0,1]

H

(
(DP )

∫ b

a

F̃ r(t)dt, (DP )
∫ b

a

G̃r(t)dt

)

≤ sup
r∈(0,1]

∫ b

a

H(F̃ r(t), G̃r(t))dt

≤
∫ b

a

sup
r∈(0,1]

H(F̃ r(t), G̃r(t))dt

=
∫ b

a

D(F̃ (t), G̃(t))dt.

¤

The following theorem is the Dominated Convergence Theorem for
the Denjoy-Pettis integral of fuzzy mappings.

Theorem 3.5. Let X be a reflexive and separable Banach space
and let F̃n : [a, b] → F(X) be a DP-integrable fuzzy mapping for

each n ∈ N and let F̃ : [a, b] → F(X) be a fuzzy mapping such that

lim
n→∞

D(F̃n(t), F̃ (t)) = 0 on [a, b]. If there exists a Denjoy integrable

function h on [a, b] such that ‖F̃ 0
n(t)‖ ≤ h(t) on [a, b] for each n ∈ N,

then F̃ : [a, b] → F(X) is DP-integrable on [a, b] and

lim
n→∞

D

(
(DP )

∫ b

a

F̃n(t)dt, (DP )
∫ b

a

F̃ (t)dt

)
= 0.

Proof. Since lim
n→∞

D(F̃n(t), F̃ (t)) = 0 on [a, b], for each ε > 0 and

t ∈ [a, b] there exists N ∈ N such that n ≥ N ⇒ D(F̃n(t), F̃ (t)) < ε.
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For some n ∈ N with n ≥ N ,

‖F̃ 0(t)‖ = D(F̃ (t), 0̃) ≤ D(F̃ (t), F̃n(t)) + D(F̃n(t), 0̃)

< ‖F̃ 0
n(t)‖+ ε ≤ h(t) + ε.

for each t ∈ [a, b]. Since ε > 0 is arbitrary, ‖F̃ 0(t)‖ ≤ h(t) on
[a, b]. Thus F̃ : [a, b] → F(X) is Denjoy integrably bounded on
[a, b]. Since F̃n : [a, b] → F(X) is DP-integrable on [a, b] for each
n ∈ N, there exists un ∈ F(X) such that [un]r = (DP )

∫ b

a
F̃ r

n(t)dt

for each r ∈ (0, 1] and n ∈ N. Since lim
n→∞

D(F̃n(t), F̃ (t)) = 0 on

[a, b], lim
n→∞

H(F̃ r
n(t), F̃ r(t)) = 0 on [a, b] for each r ∈ (0, 1]. Since

‖F̃ 0
n(t)‖ ≤ h(t) on [a, b] for each n ∈ N, ‖F̃ r

n(t)‖ ≤ h(t) on [a, b] for each
r ∈ (0, 1] and n ∈ N. By [10, Theorem 3.7], F̃ r : [a, b] → CWK(X)
is DP-integrable on [a, b] for each r ∈ (0, 1]. Let [c, d] be any subin-
terval of [a, b]. Then there exists Mr ∈ CWK(X) such that Mr =
(DP )

∫ d

c
F̃ r(t)dt for each r ∈ (0, 1]. For r1, r2 ∈ (0, 1] with r1 < r2,

F̃ r1(t) ⊇ F̃ r2(t) for each t ∈ [a, b]. By [10, Theorem 3.4], Mr1 =
(DP )

∫ d

c
F̃ r1(t)dt ⊇ (DP )

∫ d

c
F̃ r2(t)dt = Mr2 . Let r ∈ (0, 1] and {rn}

be a sequence in (0, 1] such that r1 ≤ r2 ≤ r3 ≤ · · · and lim
n→∞

rn = r.

Then F̃ r(t) = ∩∞n=1F̃
rn(t) for each t ∈ [a, b]. By [13, Lemma 4.2],

lim
n→∞

s(x∗, F̃ rn(t)) = s(x∗, F̃ r(t)) for each t ∈ [a, b] and x∗ ∈ X∗. For

each n ∈ N, |s(x∗, F̃ rn(t))| ≤ sup
‖x∗‖≤1

|s(x∗, F̃ rn(t))| = H(F̃ rn(t), {0}) =

‖F̃ rn(t)‖ ≤ h(t) on [a, b] for each x∗ ∈ BX∗ . By the Dominated Con-
vergence Theorem for the Denjoy integral, s(x∗, F̃ r(t)) is Denjoy inte-
grable on [c, d] and lim

n→∞
∫ d

c
s(x∗, F̃ rn(t))dt =

∫ d

c
s(x∗, F̃ r(t))dt for each

x∗ ∈ BX∗ . Thus lim
n→∞

s(x∗,Mrn) = s(x∗,Mr) for each x∗ ∈ BX∗ and

so lim
n→∞

s(x∗,Mrn) = s(x∗, Mr) for each x∗ ∈ X∗. By [13, Lemma

4.2], Mr = ∩∞n=1Mrn . Let M0 = X. By [13, Lemma 4.1], there ex-
ists u[c,d] ∈ F(X) such that [u[c,d]]r = Mr = (DP )

∫ d

c
F̃ r(t)dt for each

r ∈ (0, 1]. Hence F̃ : [a, b] → F(X) is DP-integrable on [a, b]. By
Theorem 3.4 and the Dominated Convergence Theorem for the Denjoy
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integral,

D

(
(DP )

∫ b

a

F̃n(t)dt, (DP )
∫ b

a

F̃ (t)dt

)

≤
∫ b

a

D(F̃n(t), F̃ (t))dt → 0 as n →∞.

Thus limn→∞D
(
(DP )

∫ b

a
F̃n(t)dt, (DP )

∫ b

a
F̃ (t)dt

)
= 0.

¤

Let Fn : [a, b] → CWK(X) be a set-valued mapping for each n ∈ N.
The sequence {Fn} is said to be monotone increasing (resp., monotone
decreasing) if for each n ∈ N Fn(t) ⊆ Fn+1(t) (resp., Fn(t) ⊇ Fn+1(t))
for all t ∈ [a, b]. The sequence {Fn} is said to be monotone if it is
monotone increasing or monotone decreasing. Let F̃n : [a, b] → F(X)
be a fuzzy mapping for each n ∈ N. The sequence {F̃n} is said to be
monotone increasing (resp., monotone decreasing) if the sequence {F̃ r

n}
is monotone increasing (resp., monotone decreasing) for each r ∈ (0, 1].
The sequence {F̃n} is said to be monotone if it is monotone increasing
or monotone decreasing.

The following theorem is the Monotone Convergence Theorem for
the Denjoy-Pettis integral of fuzzy mappings.

Theorem 3.6. Let X be a reflexive and separable Banach space
and let {F̃n} be a monotone sequence of DP-integrable fuzzy map-

pings on [a, b] and let F̃ : [a, b] → F(X) be a fuzzy mapping such

that D(F̃1(t), F̃ (t)) is bounded and lim
n→∞

D(F̃n(t), F̃ (t)) = 0 on [a, b].

If limn→∞(DP )
∫ b

a
F̃n(t)dt ∈ F(X), then F̃ : [a, b] → F(X) is DP-

integrable on [a, b] and

lim
n→∞

D

(
(DP )

∫ b

a

F̃n(t)dt, (DP )
∫ b

a

F̃ (t)dt

)
= 0.

Proof. Since {F̃n} is a monotone sequence of fuzzy mappings on
[a, b], {F̃ r

n} is a monotone sequence of CWK(X)-valued mappings on
[a, b] for each r ∈ (0, 1]. Since F̃n : [a, b] → F(X) is DP-integrable on
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[a, b] for each n ∈ N, there exists un ∈ F(X) such that F̃ r
n : [a, b] →

CWK(X) is DP-integrable on [a, b] and [un]r = (DP )
∫ b

a
F̃ r

n(t)dt for
each r ∈ (0, 1] and n ∈ N. Since lim

n→∞
D(F̃n(t), F̃ (t)) = 0 on [a, b],

lim
n→∞

H(F̃ r
n(t), F̃ r(t)) = 0 on [a, b] for each r ∈ (0, 1]. Since D(F̃1(t), F̃ (t))

is bounded on [a, b], H(F̃ r
1 (t), F̃ r(t)) is bounded on [a, b] for each

r ∈ (0, 1]. Let limn→∞(DP )
∫ b

a
F̃n(t)dt = u ∈ F(X). Then for each

ε > 0 there exists N ∈ N such that n ≥ N implies

D

(
(DP )

∫ b

a

F̃n(t)dt, u

)
= D(un, u)

= sup
r∈(0,1]

H([un]r, [u]r) < ε.

Hence for any n ≥ N , we have

H

(
(DP )

∫ b

a

F̃ r
n(t)dt, [u]r

)
= H([un]r, [u]r) < ε

for each r ∈ (0, 1]. Thus limn→∞(DP )
∫ b

a
F̃ r

n(t)dt = [u]r ∈ CWK(X)
for each r ∈ (0, 1]. By [10, Theorem 3.8], F̃ r : [a, b] → CWK(X) is
DP-integrable on [a, b] and

lim
n→∞

H

(
(DP )

∫ b

a

F̃ r
n(t)dt, (DP )

∫ b

a

F̃ r(t)dt

)
= 0

for each r ∈ (0, 1]. Let [c, d] be any subinterval of [a, b]. Then there
exists Mr ∈ CWK(X) such that Mr = (DP )

∫ d

c
F̃ r(t)dt for each r ∈

(0, 1]. For r1, r2 ∈ (0, 1] with r1 < r2, F̃ r1(t) ⊇ F̃ r2(t) for each t ∈ [a, b].
By [10, Theorem 3.4], Mr1 = (DP )

∫ d

c
F̃ r1(t)dt ⊇ (DP )

∫ d

c
F̃ r2(t)dt =

Mr2 . Let r ∈ (0, 1] and {rn} be a sequence in (0, 1] such that r1 ≤ r2 ≤
r3 ≤ · · · and lim

n→∞
rn = r. Then F̃ r(t) = ∩∞n=1F̃

rn(t) for each t ∈ [a, b].

By [13, Lemma 4.2], lim
n→∞

s(x∗, F̃ rn(t)) = s(x∗, F̃ r(t)) for each t ∈ [a, b]

and x∗ ∈ X∗. {s(x∗, F̃ rn(t)} is a monotone decreasing sequence of
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Denjoy integrable functions defined on [a, b] for each x∗ ∈ X∗. Now we
have

lim
n→∞

H

(
(DP )

∫ d

c

F̃ r
n(t)dt, (DP )

∫ d

c

F̃ r(t)dt

)

= lim
n→∞

sup
‖x∗‖≤1

∣∣∣∣∣s
(

x∗, (DP )
∫ d

c

F̃ r
n(t)dt

)
− s

(
x∗, (DP )

∫ d

c

F̃ r(t)dt

)∣∣∣∣∣

= lim
n→∞

sup
‖x∗‖≤1

∣∣∣∣∣
∫ d

c

s(x∗, F̃ r
n(t))dt−

∫ d

c

s(x∗, F̃ r(t))dt

∣∣∣∣∣ = 0.

Hence limn→∞
∫ d

c
s(x∗, F̃ r

n(t))dt =
∫ d

c
s(x∗, F̃ r(t))dt for each x∗ ∈ BX∗ .

Therefore lim
n→∞

s(x∗,Mrn) = s(x∗,Mr) for each x∗ ∈ BX∗ and so

lim
n→∞

s(x∗,Mrn) = s(x∗,Mr) for each x∗ ∈ X∗. By [13, Lemma 4.2],

Mr = ∩∞n=1Mrn . Let M0 = X. By [13, Lemma 4.1], there exists
u[c,d] ∈ F(X) such that [u[c,d]]r = Mr = (DP )

∫ d

c
F̃ r(t)dt for each

r ∈ (0, 1]. Hence F̃ : [a, b] → F(X) is DP-integrable on [a, b]. Since F̃n

and F̃ are measurable on [a, b], D(F̃n(t), F̃ (t)) is measurable on [a, b]
for each n ∈ N. Since {F̃n} is monotone and lim

n→∞
D(F̃n(t), F̃ (t)) = 0

on [a, b], D(F̃n(t), F̃ (t)) ≥ D(F̃n+1(t), F̃ (t)) on [a, b] for each n ∈ N.
In particular, D(F̃n(t), F̃ (t)) ≤ D(F̃1(t), F̃ (t)) on [a, b] for each n ∈ N.
Since D(F̃1(t), F̃ (t)) is bounded on [a, b], D(F̃n(t), F̃ (t)) is Lebesgue
integrable and so Denjoy integrable on [a, b] for each n ∈ N. Hence we
have

D

(
(DP )

∫ b

a

F̃n(t)dt, (DP )
∫ b

a

F̃ (t)dt

)

= sup
r∈(0,1]

H

([
(DP )

∫ b

a

F̃n(t)dt

]r

,

[
(DP )

∫ b

a

F̃ (t)dt

]r)

= sup
r∈(0,1]

H

(
(DP )

∫ b

a

F̃ r
n(t)dt, (DP )

∫ b

a

F̃ r(t)dt

)
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= sup
r∈(0,1]

sup
‖x∗‖≤1

∣∣∣∣∣s
(

x∗, (DP )
∫ b

a

F̃ r
n(t)dt

)
− s

(
x∗, (DP )

∫ b

a

F̃ r(t)dt

)∣∣∣∣∣

= sup
r∈(0,1]

sup
‖x∗‖≤1

∣∣∣∣∣
∫ b

a

s(x∗, F̃ r
n(t))dt−

∫ b

a

s(x∗, F̃ r(t))dt

∣∣∣∣∣

≤ sup
r∈(0,1]

sup
‖x∗‖≤1

∫ b

a

|s(x∗, F̃ r
n(t))− s(x∗, F̃ r(t))|dt

≤ sup
r∈(0,1]

∫ b

a

sup
‖x∗‖≤1

|s(x∗, F̃ r
n(t))− s(x∗, F̃ r(t))|dt

= sup
r∈(0,1]

∫ b

a

H(F̃ r
n(t), F̃ r(t))dt

≤
∫ b

a

sup
r∈(0,1]

H(F̃ r
n(t), F̃ r(t))dt

=
∫ b

a

D(F̃n(t), F̃ (t))dt

for each n ∈ N. By the Monotone Convergence Theorem for the Denjoy
integral we have

D

(
(DP )

∫ b

a

F̃n(t)dt, (DP )
∫ b

a

F̃ (t)dt

)

≤
∫ b

a

D(F̃n(t), F̃ (t))dt → 0 as n →∞.

Thus limn→∞D
(
(DP )

∫ b

a
F̃n(t)dt, (DP )

∫ b

a
F̃ (t)dt

)
= 0.

¤
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