PROJECTIVE PROPERTIES OF REPRESENTATIONS OF A QUIVER $Q=\bullet \rightarrow \bullet$ AS $R[x]$-MODULES

Sangwon Park, Junghee Kang and Juncheol Han*

Abstract

In this paper we extend the projective properties of representations of a quiver $Q=\bullet \rightarrow \bullet$ as left R-modules to the projective properties of representations of quiver $Q=\bullet \rightarrow \bullet$ as left $R[x]$-modules. We show that if P is a projective left R-module then $0 \rightarrow P[x]$ is a projective representation of a quiver $Q=\bullet \rightarrow \bullet$ as $R[x]$-modules. And we show $0 \rightarrow L$ is a projective representation of $Q=\bullet \rightarrow \bullet$ as R-module if and only if $0 \rightarrow L[x]$ is a projective representation of a quiver $Q=\bullet \rightarrow \bullet$ as $R[x]$-modules. Then we show if P is a projective left R-module then $P[x] \xrightarrow{i d} P[x]$ is a projective representation of a quiver $Q=\bullet \rightarrow \bullet$ as $R[x]$-modules. We also show that if $L \xrightarrow{i d} L$ is a projective representation of $Q=\bullet \rightarrow \bullet$ as R-module, then $L[x] \xrightarrow{i d} L[x]$ is a projective representation of a quiver $Q=\bullet \rightarrow \bullet$ as $R[x]$-modules.

1. Introduction

A quiver is just a directed graph with vertices and edges (arrows) ([1]). We may consider many different types of quivers. We allow multiple edges and multiple arrows, and edges going from a vertex back to the same vertex. Originally a representation of quiver assigned a vector space to each vertex - and a linear map to each edge (or arrow) - with the linear map going from the vector space assigned to the initial vertex to the one assigned to the terminal vertex. For example, a representation of the

[^0]quiver $Q=\bullet \longrightarrow \bullet$ is $V_{1} \xrightarrow{f} V_{2}, V_{1}$ and V_{2} are vector spaces and f is a linear map (morphism). Then we extend this representation to the left R-modules, a representation of the quiver $Q=\bullet \rightarrow \bullet$ is $M_{1} \xrightarrow{\phi} M_{2}, M_{1}$ and M_{2} are left R-modules and ϕ is an R-linear map.

If M is a left R-module, then the polynomial $M[x]$ is a left $R[x]-$ module defined by

$$
r\left(m_{0}+m_{1} x+m_{2} x^{2} \cdots+m_{i} x^{i}\right)=r m_{0}+r m_{1} x+r m_{2} x^{2}+\cdots+r m_{i} x^{i}
$$

$$
x\left(m_{0}+m_{1} x+m_{2} x^{2} \cdots+m_{i} x^{i}\right)=m_{0} x+m_{1} x^{2}+m_{2} x^{3}+\cdots+m_{i} x^{i+1} .
$$

We call $M[x]$ as a polynomial module. Similarly we can define the power series $M[[x]]$ as a left $R[x]$-module and we call a power series module.

Now we can define R-linear maps between these two representations. R-linear maps of $M_{1} \xrightarrow{f} M_{2}$ to $N_{1} \xrightarrow{g} N_{2}$ are given by a commutative diagram

with $s_{1}, s_{2} R$-linear maps.
In ([3]) a homotopy of quivers was developed and in ([2]) cyclic quiver ring was studied. The theory of projective representations was developed in ([4]) and the theory of injective representation was studied in ([5]). Recently, in ([7]) injective covers and envelopes of representations of linear quivers was studied, and in ([6]) properties of multiple edges of quivers was studied.

Definition 1.1. ([8]) A left R-module P is said to be projective if given any surjective linear map $\sigma: M^{\prime} \rightarrow M$ and any linear map $h: P \rightarrow M$, there is a linear map $g: P \rightarrow M^{\prime}$ such that $\sigma \circ g=h$. That is

can always be completed to a commutative diagram.
Definition 1.2. ([4]) Let $P_{1}, P_{2}, M_{1}, M_{2}, N_{1}$ and N_{2} be left R-modules. A representation $P_{1} \longrightarrow P_{2}$ of a quiver $Q=\bullet \rightarrow \bullet$ is called a projective representation if every diagram of representations

can be completed to a commutative diagram as follows:

2. Projective representation of a quiver $Q=\bullet \rightarrow \bullet$ as $R[x]$ modules

Theorem 2.1. If P is a projective left R-module, then $0 \rightarrow P[x]$ is a projective representation of a quiver $Q=\bullet \longrightarrow \bullet$ as $R[x]$-modules.

Proof. Let M_{1}, M_{2}, N_{1} and N_{2} be left $R[x]$-modules, and $\alpha: M_{1} \rightarrow$ N_{1} and $\beta: M_{2} \rightarrow N_{2}$ be onto $R[x]$-linear maps, and $\bar{f}: R[x] \rightarrow N_{2}$ be a $R[x]$-linear map. Consider the following diagram

Since P is a projective left R-module, there exists an R-linear map t : $P \rightarrow M_{2}$ such that $\beta \circ t=\left.\bar{f}\right|_{P}$.

Define $\bar{t}: P[x] \rightarrow M_{2}$ by $\bar{t}\left(p_{0}+p_{1} x+\cdots+p_{n} x^{n}\right)=t\left(p_{0}\right)+t\left(p_{1}\right) x+$ $\cdots+t\left(p_{n}\right) x^{n}$. Then

$$
\begin{aligned}
& \beta \circ \bar{t}\left(p_{0}+p_{1} x+\cdots+p_{n} x^{n}\right) \\
& =\beta\left(t\left(p_{0}\right)+t\left(p_{1}\right) x+\cdots+t\left(p_{n}\right) x^{n}\right) \\
& =(\beta \circ t)\left(p_{0}\right)+(\beta \circ t)\left(p_{1}\right) x+\cdots+(\beta \circ t)\left(p_{n}\right) x^{n} \\
& =\left.\bar{f}\right|_{P}\left(p_{0}\right)+\left.\bar{f}\right|_{P}\left(p_{1}\right) x+\cdots+\left.\bar{f}\right|_{P}\left(p_{n}\right) x^{n} \\
& =\bar{f}\left(p_{0}+p_{1} x+\cdots+p_{n} x^{n}\right) .
\end{aligned}
$$

So we have $\beta \circ \bar{t}=\bar{f}$. Therefore, we can complete the following diagram

as a commutative diagram. Hence, $0 \rightarrow P[x]$ is a projective representation of a quiver $Q=\bullet \rightarrow \bullet$ as $R[x]$-modules.

We can extend above result to the power series modules.
Corollary 2.2. If P is a projective left R-module, then $0 \rightarrow P[[x]]$ is a projective representation of a quiver $Q=\bullet \longrightarrow \bullet$ as $R[x]$-modules.

Example 2.3. Let $R=Z_{6}$, then $P=Z_{2}$ is a projective Z_{6}-module. $0 \rightarrow Z_{2}[x]$ is a projective representation of a quiver $Q=\bullet \rightarrow \bullet$ as $Z_{6}[x]$-modules.

Theorem 2.4. $0 \rightarrow L$ is a projective representation of $Q=\bullet \rightarrow \bullet$ as R-modules if and only if $0 \rightarrow L[x]$ is a projective representation of a quiver $Q=\bullet \rightarrow \bullet$ as $R[x]$-modules.

Proof. Let M_{1}, M_{2}, N_{1} and N_{2} be left $R[x]$-modules, and $\alpha: M_{1} \rightarrow N_{1}$ and $\beta: M_{2} \rightarrow N_{2}$ be onto $R[x]$-linear maps, and $f: L[x] \rightarrow N_{2}$ be a $R[x]$-linear map.
Consider the following diagram

Since $0 \rightarrow L$ is a projective representation, we can complete the following diagram

as a commutative diagram.
Define $\bar{t}: L[x] \rightarrow M_{2}$ by $\bar{t}\left(n_{0}+n_{1} x+\cdots+n_{n} x^{n}\right)=t\left(n_{0}\right)+t\left(n_{1}\right) x+$ $\cdots+t\left(n_{n}\right) x^{n}$. Then

$$
\begin{aligned}
& \beta \circ \bar{t}\left(n_{0}+n_{1} x+\cdots+n_{n} x^{n}\right) \\
& =\beta\left(t\left(n_{0}\right)+t\left(n_{1}\right) x+\cdots+t\left(n_{n}\right) x^{n}\right) \\
& =(\beta \circ t)\left(p_{0}\right)+(\beta \circ t)\left(p_{1}\right) x+\cdots+(\beta \circ t)\left(p_{n}\right) x^{n} \\
& =f\left(n_{0}\right)+f\left(n_{1}\right) x+\cdots+f\left(n_{n}\right) x^{n} \\
& =f\left(n_{0}+n_{1} x+\cdots+n_{n} x^{n}\right) .
\end{aligned}
$$

So we have the following diagram by $\bar{t}: L[x] \rightarrow M_{2}$

as a commutative diagram. Hence, $0 \rightarrow L[x]$ is a projective representation of a quiver $Q=\bullet \longrightarrow$ • as $R[x]$-modules.

Conversely, Let M_{1}, M_{2}, N_{1} and N_{2} be left R-modules, and $\alpha: M_{1} \rightarrow$ N_{1} and $\beta: M_{2} \rightarrow N_{2}$ be onto R-linear maps, and $f: L \rightarrow N_{2}$ be a R-linear map. Consider the following diagram

Since $0 \rightarrow L[x]$ is a projective representation, we can complete the following diagram by $\bar{t}: L[x] \rightarrow M_{2}[x]$

where $\bar{f}: L[x] \rightarrow M_{2}[x]$ by $\bar{f}\left(n_{0}+n_{1} x+\cdots+n_{j} x^{j}\right)=f\left(n_{0}\right)+f\left(n_{1}\right) x+$ $\cdots+f\left(n_{j}\right) x^{j}$. and $\bar{\beta}: M_{2}[x] \rightarrow N_{2}[x]$ by $\bar{\beta}\left(m_{0}+m_{1} x+\cdots+m_{i} x^{i}\right)=$ $\beta\left(m_{0}\right)+\beta\left(m_{1}\right) x+\cdots+\beta\left(m_{i}\right) x^{i}$. Define $t: L \rightarrow M_{2}$ by $t\left(n_{0}\right)=m_{0}$. Let $n_{0} \in L$ then $\beta \circ t\left(n_{0}\right)=\beta\left(m_{0}\right)$. Since

$$
\begin{aligned}
& \bar{\beta} \circ \bar{t}\left(n_{0}\right) \\
& =\bar{\beta}\left(m_{0}+m_{1} x+\cdots m_{i} x^{i}\right) \\
& =\beta\left(m_{0}\right)+\beta\left(m_{1}\right) x+\cdots \beta\left(m_{i}\right) x^{i} \\
& =\bar{f}\left(n_{0}\right)=f\left(n_{o}\right),
\end{aligned}
$$

$\beta\left(m_{1}\right), \cdots, \beta\left(m_{i}\right)=0$. So $\beta\left(m_{0}\right)=f\left(n_{0}\right)$. Therefore $\beta \circ t\left(n_{0}\right)=f\left(n_{0}\right)$.
So we have the following diagram

as a commutative diagram. Hence, $0 \rightarrow L$ is a projective representation of a quiver $Q=\bullet \longrightarrow$ as R-modules.

Corollary 2.5. $0 \rightarrow L$ is a projective representation of $Q=\bullet \rightarrow \bullet$ as R-modules if and only if $0 \rightarrow L[[x]]$ is a projective representation of a quiver $Q=\bullet \rightarrow$ as $R[x]$-modules.

REmark 2.6. $P[x] \rightarrow 0$ is not a projective representation of a quiver $Q=\bullet \longrightarrow \bullet$ as $R[x]$-modules if $P \neq 0$, because the following diagram

can not be completed as a commutative diagram.
Similarly, $P[[x]] \rightarrow 0$ is not a projective representation of a quiver $Q=\bullet \longrightarrow \bullet$ as $R[x]$-modules if $P \neq 0$.

Theorem 2.7. If P is a projective left R-module, then $P[x] \xrightarrow{i d} P[x]$ is a projective representation of a quiver $Q=\bullet \longrightarrow \bullet$ as $R[x]$-modules.

Proof. Let M_{1}, M_{2}, N_{1} and N_{2} be left $R[x]$-modules and let $g: M_{1} \rightarrow$ M_{2} and $h: N_{1} \rightarrow N_{2}$ be $R[x]$-linear maps. Let $\alpha: M_{1} \rightarrow N_{1}, \beta: M_{2} \rightarrow$ N_{2} be onto $R[x]$-linear maps. Let $k: P[x] \rightarrow N_{1}$ be an $R[x]$-linear map and choose $h \circ k: P[x] \rightarrow N_{2}$ as an $R[x]$-linear map. And consider the following diagram:

Since P is a projective left R-module, there exist R-linear maps $s: P \rightarrow$ M_{1} and $t: P \rightarrow M_{2}$ such that $\alpha \circ s=\left.k\right|_{P}$ and $\beta \circ t=\left.h \circ k\right|_{P}$.

Define $\bar{s}: P[x] \rightarrow M_{1}$ by $\bar{s}\left(p_{0}+p_{1} x+\cdots+p_{n} x^{n}\right)=s\left(p_{0}\right)+s\left(p_{1}\right) x+$ $\cdots+s\left(p_{n}\right) x^{n}$. Then

$$
\begin{aligned}
& \alpha \circ \bar{s}\left(p_{0}+p_{1} x+\cdots+p_{n} x^{n}\right) \\
& =\alpha\left(s\left(p_{0}\right)+s\left(p_{1}\right) x+\cdots+s\left(p_{n}\right) x^{n}\right) \\
& =(\alpha \circ s)\left(p_{0}\right)+(\alpha \circ s)\left(p_{1}\right) x+\cdots+(\alpha \circ s)\left(p_{n}\right) x^{n} \\
& =\left.k\right|_{P}\left(p_{0}\right)+\left.k\right|_{P}\left(p_{1}\right) x+\cdots+\left.k\right|_{P}\left(p_{n}\right) x^{n} \\
& =k\left(p_{0}+p_{1} x+\cdots+p_{n} x^{n}\right) .
\end{aligned}
$$

Define $\bar{t}: P[x] \rightarrow M_{2}$ by $\bar{t}\left(p_{0}+p_{1} x+\cdots+p_{n} x^{n}\right)=t\left(p_{0}\right)+t\left(p_{1}\right) x+$ $\cdots+t\left(p_{n}\right) x^{n}$. Then similarly we have $\beta \circ \bar{t}\left(p_{0}+p_{1} x+\cdots+p_{n} x^{n}\right)=$
$(h \circ k)\left(p_{0}+p_{1} x+\cdots+p_{n} x^{n}\right)$. So we have the following diagram by $\bar{s}: P[x] \rightarrow M_{1}$ and $\bar{t}: P[x] \rightarrow M_{2}$

as a commutative diagram. Hence, $P[x] \xrightarrow{i d} P[x]$ is a projective representation of a quiver $Q=\bullet \longrightarrow$ • as $R[x]$-modules.

Corollary 2.8. If P is a projective left R-module,
then $P[[x]] \xrightarrow{i d} P[[x]]$ is a projective representation of a quiver $Q=$ $\bullet \longrightarrow$ as $R[x]$-modules.

Example 2.9. Let $R=Z_{6}$, then $P=Z_{2}$ is a projective Z_{6}-module. $Z_{2}[x] \xrightarrow{i d} Z_{2}[x]$ is a projective representation of a quiver $Q=\bullet \longrightarrow \bullet$ as $Z_{6}[x]$-modules.

THEOREM 2.10. If $L \xrightarrow{i d} L$ is a projective representation of $Q=$ $\bullet \rightarrow \bullet$ as R-modules, then $L[x] \xrightarrow{i d} L[x]$ is a projective representation of a quiver $Q=\bullet \rightarrow \bullet$ as $R[x]$-modules.

Proof. Let $M_{1}, M_{2}, N_{1}, N_{2}$ be left $R[x]$-modules, and $\alpha: M_{1} \rightarrow N_{1}$ and $\beta: M_{2} \rightarrow N_{2}$ be onto $R[x]$-linear maps, and consider the following diagram

Since $L \rightarrow L$ is a projective representation, we can complete the following diagram

as a commutative diagram.
Define $\bar{s}: L[x] \rightarrow M_{1}$ by $\bar{s}\left(n_{0}+n_{1} x+\cdots+n_{i} x^{i}\right)=s\left(n_{0}\right)+s\left(n_{1}\right) x+$ $\cdots+s\left(n_{i}\right) x^{i}$ and $\bar{t}: L[x] \rightarrow M_{2}$ by $\bar{t}\left(n_{0}+n_{1} x+\cdots+n_{j} x^{j}\right)=t\left(n_{0}\right)+$ $t\left(n_{1}\right) x+\cdots+t\left(n_{j}\right) x^{j}$. Then we see that the following by $\bar{s}: L[x] \rightarrow M_{1}$ and $\bar{t}: L[x] \rightarrow M_{2}$

as a commutative diagram. Hence, $L[x] \rightarrow L[x]$ is a projective representation of a quiver $Q=\bullet \longrightarrow \bullet$ as $R[x]$-modules.

COROLLARY 2.11. If $L \xrightarrow{i d} L$ is a projective representation of $Q=$ $\bullet \rightarrow$ as R-module, then $L[[x]] \xrightarrow{i d} L[[x]]$ is a projective representation of a quiver $Q=\bullet \rightarrow$ as $R[x]$-modules.

References

[1] R. Diestel, Graph Theory, G.T.M. No.88, Springer-Verlag, New York, 1997.
[2] E. Enochs, I. Herzog, S. Park, Cyclic quiver rings and polycyclic-by-finite group rings, Houston J. Math. 25(1)(1999), 1-13.
[3] E. Enochs, I. Herzog, A homotopy of quiver morphism with applications to representations, Canad. J. Math. 51(2)(1999), 294-308.
[4] S. Park, Projective representations of quivers, Int. J. Math. Math. Sci. 31(2)(2002), 97-101.
[5] S. Park, D. Shin, Injective representation of quiver, Commun. Korean Math. Soc. 21(1)(2006), 37-43.
[6] S. Park, Injective and projective properties of representation of quivers with n edges, Korean J. Math. 16(3)(2008), 323-334.
[7] S. Park, E. Enochs and H. Kim, Injective covers and envelopes of representation of linear quiver, Comm. Algebra 37(2)(2009), 515-524 .
[8] J. Rotman, An Introduction to Homological Algebra, Academic Press Inc., New York, 1979.

Department of Mathematics
Dong-A University
Pusan 604-714, Korea
E-mail: swpark@donga.ac.kr
Department of Mathematics
Dong-A University
Pusan 604-714, Korea
E-mail: 1010spring@hanmail.net
Department of Mathematics Educations
Pusan National University
Pusan 609-735, Korea
E-mail: jchan@pusan.ac.kr

[^0]: Received June 23, 2010. Revised September 6, 2010. Accepted September 11, 2010.

 2000 Mathematics Subject Classification: 16E30, 13C11, 16D80.
 Key words and phrases: quiver, projective module, injective module, projective representation, injective representation.

 This study was supported by research funds from Dong-A University.

 * Corresponding author.

