RESULTS ON FUZZY r-MINIMAL SEMICOMPACTNESS ON FUZZY MINIMAL SPACES

Myeong Hwan Kim

ABSTRACT. We introduce the concept of fuzzy co-r-M-semicontinuous, and investigate the relationships between fuzzy co-r-M-semicontinuous mappings and several types of fuzzy r-minimal semicompactness.

1. Introduction

The concept of fuzzy set was introduced by Zadeh [8]. Chang [1] defined fuzzy topological spaces using fuzzy sets. In [4], Ramadan introduced smooth topological spaces which are a generalization of fuzzy topological spaces. In [6], we introduced the concept of fuzzy r-minimal space which is an extension of the smooth topological space. The concepts of fuzzy r-minimal open sets and fuzzy r-M-continuous mappings were also introduced and studied. In [3], we introduced the concepts of fuzzy r-minimal semiopen sets and fuzzy r-M-semicontinuous mappings, which are generalizations of fuzzy r-minimal open sets and fuzzy r-Mcontinuous mappings, respectively. Yoo et al. introduced the concepts of fuzzy r-minimal compactness, almost fuzzy r-minimal compactness and nearly fuzzy r-minimal compactness on fuzzy r-minimal spaces in [7]. We introduced and studied the concepts of fuzzy r-minimal semicompact, almost fuzzy r-minimal semicompact, nearly fuzzy r-minimal semicompact on fuzzy r-minimal spaces in [5]. In this paper, we introduce the concept of fuzzy co-r-M-semicontinuous, and investigate the relationships between fuzzy co-r-M-semicontinuous mappings and several types of fuzzy r-minimal semicompactness.

Received July 12, 2010. Revised August 15, 2010. Accepted August 20, 2010. 2000 Mathematics Subject Classification: 54C08.

Key words and phrases: fuzzy r-minimal semiopen, fuzzy co-r-M-semicontinuous, fuzzy r-minimal semicompact, almost fuzzy r-minimal semicompact, nearly fuzzy r-minimal semicompact.

2. Preliminaries

Let I be the unit interval [0,1] of the real line. A member A of I^X is called a fuzzy set [7] of X. By $\tilde{0}$ and $\tilde{1}$, we denote constant maps on X with value 0 and 1, respectively. For any $A \in I^X$, A^c denotes the complement $\tilde{1} - A$. All other notations are standard notations of fuzzy set theory.

An fuzzy point x_{α} in X is a fuzzy set x_{α} defined as follows

$$x_{\alpha}(y) = \begin{cases} \alpha & \text{if } y = x \\ 0 & \text{if } y \neq x. \end{cases}$$

Let $f: X \to Y$ be a function and $A \in I^X$ and $B \in I^Y$. Then f(A) is a fuzzy set in Y, defined by

$$f(A)(y) = \begin{cases} \sup_{z \in f^{-1}(y)} A(z), & \text{if } f^{-1}(y) \neq \emptyset, \\ 0, & \text{otherwise,} \end{cases}$$

for $y \in Y$ and $f^{-1}(B)$ is a fuzzy set in X, defined by $f^{-1}(B)(x) = B(f(x)), x \in X$.

A smooth topology [2,5] on X is a map $\mathcal{T}: I^X \to I$ which satisfies the following properties:

- 1. $\mathcal{T}(\tilde{0}) = \mathcal{T}(\tilde{1}) = 1$.
- 2. $\mathcal{T}(A_1 \cap A_2) \geq \mathcal{T}(A_1) \wedge \mathcal{T}(A_2)$.
- 3. $\mathcal{T}(\cup A_i) \geq \wedge \mathcal{T}(A_i)$.

The pair (X, \mathcal{T}) is called a *smooth topological space*.

Let X be a nonempty set and $r \in (0,1] = I_0$. A fuzzy family $\mathcal{M}: I^X \to I$ on X is said to have a fuzzy r-minimal structure [6] if the family

$$\mathcal{M}_r = \{ A \in I^X \mid \mathcal{M}(A) \ge r \}$$

contains $\tilde{0}$ and $\tilde{1}$.

Then the (X, \mathcal{M}) is called a fuzzy r-minimal space [6] (simply, fuzzy r-FMS). Every member of \mathcal{M}_r is called a fuzzy r-minimal open set. A fuzzy set A is called a fuzzy r-minimal closed set if the complement of A is a fuzzy r-minimal open set.

Let (X, \mathcal{M}) be an r-FMS and $r \in I_0$. The fuzzy r-minimal closure of A, denoted by mC(A, r), is defined as

$$mC(A,r) = \bigcap \{B \in I^X : \tilde{1} - B \in \mathcal{M}_r \text{ and } A \subseteq B\}.$$

The fuzzy r-minimal interior of A, denoted by mI(A, r), is defined as

$$mI(A,r) = \bigcup \{B \in I^X : B \in \mathcal{M}_r \text{ and } B \subseteq A\}.$$

THEOREM 2.1 ([6]). Let (X, \mathcal{M}) be an r-FMS and $A, B \in I^X$.

- (1) $mI(A,r) \subseteq A$ and if A is a fuzzy r-minimal open set, then mI(A,r) = A.
- (2) $A \subseteq mC(A,r)$ and if A is a fuzzy r-minimal closed set, then mC(A,r) = A.
 - (3) If $A \subseteq B$, then $mI(A, r) \subseteq mI(B, r)$ and $mC(A, r) \subseteq mC(B, r)$.
- (4) $mI(A,r) \cap mI(B,r) \supseteq mI(A \cap B,r)$ and $mC(A,r) \cup mC(B,r) \subseteq mC(A \cup B,r)$.
 - (5) mI(mI(A,r),r) = mI(A,r) and mC(mC(A,r),r) = mC(A,r).
 - (6) $\tilde{1} mC(A, r) = mI(\tilde{1} A, r)$ and $\tilde{1} mI(A, r) = mC(\tilde{1} A, r)$.

Let (X, \mathcal{M}) be an r-FMS and $A \in I^X$. Then a fuzzy set A is called a fuzzy r-minimal semiopen set [3] in X if

$$A \subseteq mC(mI(A,r),r).$$

A fuzzy set A is called a fuzzy r-minimal semiclosed set if the complement of A is fuzzy r-minimal semiopen.

We showed that any union of fuzzy r-minimal semiopen sets is fuzzy r-minimal semiopen [3].

For $A \in I^X$, msC(A, r) and msI(A, r), respectively, are defined as the following:

$$msC(A,r) = \cap \{F \in I^X : A \subseteq F, \ \ F \text{ is fuzzy r-minimal semiclosed}\}$$

$$msI(A,r) = \bigcup \{U \in I^X : U \subseteq A, U \text{ is fuzzy } r\text{-minimal semiopen } \}.$$

THEOREM 2.2 ([3]). Let (X, \mathcal{M}) be an r-FMS and $A \in I^X$. Then

- $(1) \ msI(A,r) \subseteq A \subseteq msC(A,r).$
- (2) If $A \subseteq B$, then $msI(A, r) \subseteq msI(B, r)$ and $msC(A, r) \subseteq msC(B, r)$.
- (3) A is fuzzy r-minimal semiopen iff msI(A, r) = A.
- (4) F is fuzzy r-minimal semiclosed iff msC(F, r) = F.
- (5) msI(msI(A,r),r) = msI(A,r) and msC(msC(A,r),r) = msC(A,r).
- (6) $msC(\tilde{1}-A,r) = \tilde{1}-msI(A,r)$ and $msI(\tilde{1}-A,r) = \tilde{1}-msC(A,r)$.

3. Main results

DEFINITION 3.1. Let (X, \mathcal{M}) and (Y, \mathcal{N}) be two r-FMS's. Then $f: X \to Y$ is said to be fuzzy co-r-M-semicontinuous if for every fuzzy r-minimal semiopen set V, $f^{-1}(V)$ is fuzzy r-minimal open in Y.

THEOREM 3.2. Let $f: X \to Y$ be a mapping on two r-FMS's (X, \mathcal{M}) and (Y, \mathcal{N}) .

- (1) f is fuzzy co-r-M-continuous.
- (2) $f^{-1}(B)$ is a fuzzy r-minimal closed set for each fuzzy r-minimal semiclosed set B in Y.
 - (3) $f(mC(A,r)) \subseteq msC(f(A),r)$ for $A \in I^X$.
 - (4) $mC(f^{-1}(B), r) \subseteq f^{-1}(msC(B, r))$ for $B \in I^Y$.
 - (5) $f^{-1}(msI(B,r)) \subseteq mI(f^{-1}(B),r)$ for $B \in I^Y$.

Then $(1) \Leftrightarrow (2) \Rightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5)$.

Proof. $(1) \Leftrightarrow (2)$ Obvious.

 $(2) \Rightarrow (3)$ For $A \in I^X$,

$$f^{-1}(msC(f(A),r))$$

- $= f^{-1}(\cap \{F \in I^Y : f(A) \subseteq F \text{ and } F \text{ is fuzzy } r\text{-minimal semiclosed}\})$
- $= \cap \{f^{-1}(F) \in I^X : A \subseteq f^{-1}(F) \text{ and } f^{-1}(F) \text{ is fuzzy } r\text{-minimal closed}\}$
- $\supseteq \cap \{K \in I^X : A \subseteq K \text{ and } K \text{ is fuzzy r-minimal closed}\}$
- = mC(A, r).

Hence $f(mC(A, r)) \subseteq msC(f(A), r)$.

(3) \Rightarrow (4) Let $B \in I^Y$. Then $f(B) \in I^X$ and from (3), it follows that $f(mC(f^{-1}(B),r)) \subseteq msC(f(f^{-1}(B)),r) \subseteq msC(B,r)$.

Hence we get (4). Similarly, we get $(4) \Rightarrow (3)$.

$$(4) \Leftrightarrow (5)$$
 It is obvious.

EXAMPLE 3.3. Let X = I and let A, B be fuzzy sets defined as follows:

П

$$A(x) = x, \quad x \in I;$$

$$B(x) = -x, \quad x \in I.$$

Define

$$\mathcal{M}(\sigma) = \begin{cases} \frac{1}{2}, & \text{if } \sigma = \tilde{0}, \tilde{1}, \\ \frac{2}{3}, & \text{if } \sigma = A, B, \\ 0, & \text{otherwise.} \end{cases}$$

Define

$$\mathcal{N}(\sigma) = \begin{cases} \frac{2}{3}, & \text{if } \sigma = A, B, \\ \frac{1}{2}, & \text{if } \sigma = A \cup B, \tilde{0}, \tilde{1}, \\ 0, & \text{otherwise.} \end{cases}$$

Let $f:(X,\mathcal{M})\to (X,\mathcal{N})$ be the identity mapping. Then f is satisfies (3) of Theorem 3.2 but it is not fuzzy $\operatorname{co-\frac{1}{2}-M}$ -continuous since $A\cap B$ is fuzzy $\frac{1}{2}$ -minimal semiopen in Y but not fuzzy $\frac{1}{2}$ -minimal open in X.

THEOREM 3.4. Let $f: X \to Y$ be a mapping on two r-FMS's (X, \mathcal{M}) and (Y, \mathcal{N}) . Then the statements are equivalent:

- (1) If for every fuzzy point x_{α} and each fuzzy r-minimal semiopen set V of $f(x_{\alpha})$, there exists an r-minimal open set U of x_{α} such that $f(U) \subset V$.
 - (2) $f^{-1}(msI(B,r)) \subseteq mI(f^{-1}(B),r)$ for $B \in I^Y$.
- Proof. (1) \Rightarrow (2) Let $B \in I^Y$ and $x_{\alpha} \in f^{-1}(msI(B,r))$. Then there exists a fuzzy r-minimal semiopen set V of $f(x_{\alpha})$ such that $V \subseteq B$. By hypothesis, there exists a fuzzy r-minimal open $U_{x_{\alpha}}$ containing x_{α} such that $f(U_{x_{\alpha}}) \subseteq V \subseteq B$. Then from the definition of fuzzy r-minimal interior operator, $x_{\alpha} \in mI(f^{-1}(B), r)$. Hence, we have $f^{-1}(msI(B, r)) \subseteq mI(f^{-1}(B), r)$.
- (2) \Rightarrow (1) Let x_{α} be a fuzzy point in X and V a fuzzy r-minimal semiopen set of $f(x_{\alpha})$. Since $f^{-1}(V)$ is fuzzy r-minimal open, $x_{\alpha} \in f^{-1}(V) = mI(f^{-1}(V), r)$. Thus there exists a fuzzy r-minimal open set U such that $x_{\alpha} \in U \subseteq f^{-1}(V)$. Hence we have the statement (1).

Let X be a nonempty set and $\mathcal{M}: I^X \to I$ a fuzzy family on X. The fuzzy family \mathcal{M} is said to have the property (\mathcal{U}) [6] if for $A_i \in \mathcal{M}$ $(i \in J)$,

$$\mathcal{M}(\cup A_i) \ge \wedge \mathcal{M}(A_i).$$

THEOREM 3.5 ([6]). Let (X, \mathcal{M}) be an r-FMS with the property (\mathcal{U}) . Then

- (1) mI(A, r) = A if and only if $A \in \mathcal{M}_r$ for $A \in I^X$.
- (2) mC(A, r) = A if and only if $\tilde{1} A \in \mathcal{M}_r$ for $A \in I^X$.

COROLLARY 3.6. Let $f: X \to Y$ be a mapping on two r-FMS's (X, \mathcal{M}) and (Y, \mathcal{N}) . If \mathcal{M} has the property (\mathcal{U}) , then the following are equivalent:

(1) f is fuzzy co-r-M-continuous.

- (2) $f^{-1}(B)$ is a fuzzy r-minimal closed set, for each fuzzy r-minimal semiclosed set B in Y.
 - (3) $f(mC(A,r)) \subseteq msC(f(A),r)$ for $A \in I^X$.
 - (4) $mC(f^{-1}(B), r) \subseteq f^{-1}(msC(B, r))$ for $B \in I^Y$.
 - (5) $f^{-1}(msI(B,r)) \subseteq mI(f^{-1}(B),r)$ for $B \in I^Y$.

DEFINITION 3.7. Let (X, \mathcal{M}) and (Y, \mathcal{N}) be two r-FMS's. Then a mapping $f: X \to Y$ is called fuzzy r-M-semiopen if for every $A \in \mathcal{M}_r$, f(A) is fuzzy r-minimal semiopen.

We recall that: Let (X, \mathcal{M}) and (Y, \mathcal{N}) be two r-FMS's. Then a mapping $f: X \to Y$ is called fuzzy r-M-open [6] if for every $A \in \mathcal{M}_r$, f(A) is fuzzy r-minimal open.

Obviously the implication is obtained:

fuzzy r-M-open mapping \Rightarrow fuzzy r-M-semiopen mapping

EXAMPLE 3.8. Let X = I. Consider fuzzy sets A, B defined as follows:

$$A(x) = \frac{1}{2}x, \quad x \in I;$$
 $B(x) = -\frac{1}{2}(x-1), \quad x \in I.$

Define

$$\mathcal{M}(\sigma) = \begin{cases} \frac{1}{2}, & \text{if } \sigma = A, B \\ \frac{2}{3}, & \text{if } \sigma = A \cup B, \tilde{0}, \tilde{1} \\ 0, & \text{otherwise.} \end{cases}$$

Define

$$\mathcal{N}(\sigma) = \begin{cases} \frac{2}{3}, & \text{if } \sigma = A, B \\ \frac{1}{2}, & \text{if } \sigma = \tilde{0}, \tilde{1} \\ 0, & \text{otherwise.} \end{cases}$$

Let $f:(X,\mathcal{M})\to (X,\mathcal{N})$ be the identity mapping. Then f is fuzzy $\frac{1}{2}$ -M-semiopen but not fuzzy $\frac{1}{2}$ -M-open.

THEOREM 3.9. Let $f: X \to Y$ be a mapping on two r-FMS's (X, \mathcal{M}) and (Y, \mathcal{N}) . Then the following are equivalent:

- (1) f is fuzzy r-M-semiopen.
- (2) $f(mI(A), r) \subseteq msI(f(A), r)$ for $A \in I^X$.
- (3) $mI(f^{-1}(B), r) \subseteq f^{-1}(msI(B), r)$ for $B \in I^Y$.

Proof. (1)
$$\Rightarrow$$
 (2) For $A \in I^X$,
 $f(mI(A), r) = f(\cup \{B \in I^X : B \subseteq A, B \text{ is fuzzy } r\text{-minimal open}\})$
 $= \cup \{f(B) \in I^Y : f(B) \subseteq f(A), f(B) \text{ is fuzzy } r\text{-minimal semiopen}\}$
 $\subseteq \cup \{U \in I^Y : U \subseteq f(A), U \text{ is fuzzy } r\text{-minimal semiopen}\}$
 $= msI(f(A), r).$

Hence $f(mI(A), r) \subseteq msI(f(A), r)$.

 $(2) \Rightarrow (1)$ For a fuzzy r-minimal open A, from Theorem 2.1 and hypothesis,

$$f(A) = f(mI(A), r) \subseteq msI(f(A), r).$$

From Theorem 2.2, f(A) is fuzzy r-minimal semiopen and hence f is fuzzy r-M-semiopen.

(2)
$$\Rightarrow$$
 (3) For $B \in I^Y$, from (2) it follows that $f(mI(f^{-1}(B), r)) \subseteq msI(f(f^{-1}(B)), r) \subseteq msI(B, r)$.

Hence we get (3).

Similarly, we get $(3) \Rightarrow (2)$.

DEFINITION 3.10. Let (X, \mathcal{M}) and (Y, \mathcal{N}) be two r-FMS's. Then a mapping $f: X \to Y$ is called fuzzy r-M-semiclosed if for every fuzzy r-minimal closed set A in X, f(A) is a fuzzy r-minimal semiclosed set in Y.

THEOREM 3.11. Let $f: X \to Y$ be a mapping on two r-FMS's (X, \mathcal{M}) and (Y, \mathcal{N}) . Then the following are equivalent:

- (1) f is fuzzy r-M-semiclosed.
- (2) $msC(f(A), r) \subseteq f(mC(A, r))$ for $A \in I^X$.
- (3) $f^{-1}(msC(B,r)) \subseteq mC(f^{-1}(B),r)$ for $B \in I^Y$.

Proof. It is similar to Theorem 3.3.

We recall the concepts of several types of fuzzy r-minimal compactness introduced in [7]. Let (X, \mathcal{M}) be an r-FMS and $\mathcal{A} = \{A_i \in I^X : i \in J\}$. \mathcal{A} is called a fuzzy r-minimal cover if $\cup \{A_i : i \in J\} = \tilde{\mathbf{1}}$. It is a fuzzy r-minimal open cover if each A_i is a fuzzy r-minimal open set. A subcover of a fuzzy r-minimal cover \mathcal{A} is a subfamily of it which also is a fuzzy r-minimal cover. A fuzzy set A in X is said to be

(1) fuzzy r-minimal compact if every fuzzy r-minimal open cover $\mathcal{A} = \{A_i \in \mathcal{M}_r : i \in J\}$ of A has a finite subcover;

(2) almost fuzzy r-minimal compact (resp., nearly fuzzy r-minimal compact) if for every fuzzy r-minimal open cover $\mathcal{A} = \{A_i \in I^X : i \in J\}$ of A, there exists $J_0 = \{j_1, j_2, \cdots, j_n\} \subseteq J$ such that $A \subseteq \bigcup_{k \in J_0} mC(A_k, r)$ (resp., $A \subseteq \bigcup_{k \in J_0} mI(mC(A_k, r), r)$).

DEFINITION 3.12 ([4]). Let (X, \mathcal{M}) be an r-FMS. A fuzzy set A in X is said to be

- (1) fuzzy r-minimal semicompact (resp., if every fuzzy r-minimal semiopen cover $\mathcal{A} = \{A_i \in \mathcal{M}_r : i \in J\}$ of A has a finite subcover;
- (2) almost fuzzy r-minimal semicompact if for every fuzzy r-minimal semiopen cover $\mathcal{A} = \{A_i \in I^X : i \in J\}$ of A, there exists $J_0 = \{j_1, j_2, \dots, j_n\} \subseteq J$ such that $A \subseteq \bigcup_{k \in J_0} msC(A_k, r)$;
- (3) nearly fuzzy r-minimal semicompact if for every fuzzy r-minimal semiopen cover $\mathcal{A} = \{A_i : i \in J\}$ of A, there exists $J_0 = \{j_1, j_2, \dots, j_n\} \subseteq J$ such that $A \subseteq \bigcup_{k \in J_0} msI(msC(A_k, r), r)$.

THEOREM 3.13. Let $f:(X,\mathcal{M})\to (Y,\mathcal{N})$ be a fuzzy co-r-M-semicontinuous mapping on two r-FMS's. If A is a fuzzy r-minimal compact set, then f(A) is fuzzy r-minimal semicompact.

Proof. Let $\{B_i \in I^Y : i \in J\}$ be a fuzzy r-minimal semiopen cover of f(A) in Y. Then since f is a fuzzy co-r-M-semicontinuous mapping, $\{f^{-1}(B_i) : i \in J\}$ is a fuzzy r-minimal open cover of A in X. Since A is fuzzy r-minimal compact, there exists a finite subset $J_0 = \{j_1, j_2, \dots, j_n\} \subseteq J$ such that $A \subseteq \bigcup_{k \in J_0} f^{-1}(B_k)$. It implies $f(A) \subseteq \bigcup_{k \in J_0} B_k$ for the finite subset J_0 of J, and hence f(A) is fuzzy r-minimal semicompact.

THEOREM 3.14. Let $f:(X,\mathcal{M})\to (Y,\mathcal{N})$ be a fuzzy co-r-M-semicontinuous mapping on two r-FMS's. If A is an almost fuzzy r-minimal compact set, then f(A) is almost fuzzy r-minimal semicompact.

Proof. Let $\{B_i \in I^Y : i \in J\}$ be a fuzzy r-minimal semiopen cover of f(A) in Y. Then $\{f^{-1}(B_i) : i \in J\}$ is a fuzzy r-minimal open cover of A in X. Since A is almost fuzzy r-minimal compact, there exists a finite subset $J_0 = \{j_1, j_2, \dots, j_n\} \subseteq J$ such that $A \subseteq \bigcup_{k \in J_0} mC(f^{-1}(B_k), r)$. It follows

$$\bigcup_{k \in J_0} mC(f^{-1}(B_k, r)) \subseteq \bigcup_{k \in J_0} f^{-1}(msC(B_k, r))
= f^{-1}(\bigcup_{k \in J_0} msC(B_k, r)).$$

So $f(A) \subseteq \bigcup_{k \in J_0} msC(B_k, r)$ and f(A) is almost fuzzy r-minimal semicompact.

THEOREM 3.15. Let a mapping $f:(X,\mathcal{M})\to (Y,\mathcal{N})$ be fuzzy co-r-M-semicontinuous and fuzzy r-M-semiopen on two r-FMS's. If A is a nearly fuzzy r-minimal compact set, then f(A) is nearly fuzzy r-minimal semicompact.

Proof. Let $\{B_i \in I^Y : i \in J\}$ be a fuzzy r-minimal semiopen cover of f(A) in Y. Then $\{f^{-1}(B_i) : i \in J\}$ is a fuzzy r-minimal open cover of A in X. Since X is nearly fuzzy r-minimal compact, there exists a finite subset $J_0 = \{j_1, j_2, \dots, j_n\} \subseteq J$ such that $A \subseteq \bigcup_{k \in J_0} mI(mC(f^{-1}(B_k), r), r)$. It follows

$$f(A) \subseteq \bigcup_{k \in J_0} f(mI(mC(f^{-1}(B_k), r), r))$$

$$\subseteq \bigcup_{k \in J_0} msI(f(mC(f^{-1}(B_k), r)), r)$$

$$\subseteq \bigcup_{k \in J_0} msI(f(f^{-1}(msC(B_k, r))), r)$$

$$\subseteq \bigcup_{k \in J_0} msI(msC(B_k, r), r).$$

Hence f(A) is nearly fuzzy r-minimal semicompact.

References

- [1] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. **24**(1968), 182–190.
- [2] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, *Gradation of openness : Fuzzy topology*, Fuzzy Sets and Systems **49**(1992), 237–242.
- [3] W. K. Min and M. H. Kim, Fuzzy r-minimal semiopen sets and fuzzy r-M-semicontinuous functions on fuzzy r-minimal spaces, Proceedings of KIIS Spring Conference 2009 **19**(1)(2009), 49–52.
- [4] ———, On Fuzzy r-Minimal Semicompactness On Fuzzy r-Minimal Spaces, submitted.
- [5] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48(1992), 371–375.
- [6] Y. H. Yoo, W. K. Min and J. I. Kim, Fuzzy r-minimal structures and fuzzy r-minimal spaces, Far East J. Math. Sci. **33**(2)(2009), 193-205.
- [7] ——, Fuzzy r-minimal compactness on fuzzy r-minimal spaces, International Journal of Fuzzy Logic and Intelligent Systems 9(4)(2009), 281-284.
- [8] L. A. Zadeh, Fuzzy sets, Information and Control 8(1965), 338–353.

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea *E-mail*: kimmw@kangwon.ac.kr