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NONLINEAR BIHARMONIC PROBLEM WITH

VARIABLE COEFFICIENT EXPONENTIAL GROWTH

TERM

Q-Heung Choi∗ and Tacksun Jung

Abstract. We consider the nonlinear biharmonic equation with
coefficient exponential growth term and Dirichlet boundary condi-
tion. We show that the nonlinear equation has at least one bounded
solution under the suitable conditions. We obtain this result by
the variational method, generalized mountain pass theorem and the
critical point theory of the associated functional.

1. Introduction and statement of main results

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let
a : Ω → R be a continuous function which changes sign in Ω and ∆2 be
the biharmonic operator. Let c ∈ R. In this paper we study the follow-
ing nonlinear biharmonic equation with variable coefficient exponential
growth nonlinear term and Dirichlet boundary condition

∆2u + c∆u = a(x)g(u) in Ω, (1.1)

u = 0, ∆u = 0 on ∂Ω.

We assume that g satisfies the following conditions:
(g1) g ∈ C(R, R),
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(g2) there is a constant A0 > 0 such that

|g(ξ)| ≤ A
φ(ξ)
0 for ξ ∈ R,

where φ : R → R is a function satisfying φ(ξ)ξ−2 → 0 as |ξ| → ∞,
(g3) there are constants µ > 2 and r0 ≥ 0 such that

0 < µG(ξ) = µ

∫ ξ

0

g(t)dt ≤ ξg(ξ) for |ξ| ≥ r0,

(g4) there exist 0 < α1 ≤ α2 < 2, A1, A2 > 0, and B1, B2 ≥ 0 such that

A1 exp|ξ|
α1 −B1 ≤ G(ξ) =

∫ ξ

0

g(t)dt ≤ A2 exp|ξ|
α2 +B2 for ξ ∈ R,

where α1, α2 are further restricted by

2

α2

− 2 >
1

α1

.

We note that the conditions 0 < α1 ≤ α2 < 2 and 2
α2
− 2 > 1

α1
imply

α2 < 1
2
. Khanfir and Lassoued [4] showed the existence of at least one

solution for the nonlinear elliptic boundary problem when f = 0 and g
is locally Hölder continuous on R+. Choi and Jung [2] show that the
problem

∆2u + c∆u = bu+ + s in Ω, (1.2)

u = 0, ∆u = 0 on ∂Ω

has at least two nontrivial solutions when (c < λ1, λ1(λ1 − c) < b <
λ2(λ2 − c) and s < 0) or (λ1 < c < λ2, b < λ1(λ1 − c) and s > 0), where
λi is the eigenvalue of ∆u + u = λu with Dirichlet boundary condition.
They obtained these results by using the variational reduction method.
They [3] also proved that when c < λ1, λ1(λ1 − c) < b < λ2(λ2 − c) and
s < 0, (1.2) has at least three nontrivial solutions by use of the degree
theory. Tarantello [7] also studied

∆2u + c∆u = b((u + 1)+ − 1), (1.3)

u = 0, ∆u = 0 on ∂Ω.

She show that if c < λ1 and b ≥ λ1(λ1 − c), then (1.3) has a nega-
tive solution. She obtained this result by the degree theory. Micheletti
and Pistoia [5] also proved that if c < λ1 and b ≥ λ2(λ2 − c), then
(1.3) has at least four solutions by the vatiational linking theorem and
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Leray-Schauder degree theory. In this paper we are looking for the weak
solutions of (1.1), that is,

∫

Ω

(∆2u + c∆u− a(x)g(u))vdx = 0 for v ∈ H,

where the space H is introduced in section 2. We note that the weak
solutions of (1.1) coincide with the critical points of the associated func-
tional

I(u) ∈ C1(H, R),

I(u) =
1

2

∫

Ω

[
1

2
|∆u|2 − c

2
|∇u|2 −

∫

Ω

a(x)G(u)]dx.

=
1

2
(‖P+u‖2 − ‖P−u‖2)−

∫

Ω

a(x)G(u)dx.

Our main results is as follows:

Theorem 1.1. Assume that λk < c < λk+1 and g satisfies (g1)-(g4).
Then we have:
(i) If g(u)u − µG(u) is bounded, then (1.1) has at least one bounded
solution.
(ii) If g(u)u− µG(u) is not bounded and there exists a small ε > 0 such
that

∫
Ω− a−(x) < ε, then (1.1) has at least two solutions, (i) one of which

is bounded and (ii) the other solution of which is large norm such that
maxx∈Ω|u(x)| > M for some M , where

a+ = a · χΩ+ , a− = −a · χΩ−

with

Ω+ = {x ∈ Ω|a(x) > 0}, Ω− = {x ∈ Ω| a(x) < 0}.

In section 2, we obtain some results on the operator ∆(∆− c), intro-
duce a Hilbert space H and investigate that I(u) is continuous, Fréchet
differentiable and satisfies the (P.S.) condition. In section 3, we prove
Theorem 1.1(i) and in section 4, we prove Theorem 1.1(ii) by using the
variational method, the generalized mountain pass theorem and the crit-
ical point theory.
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2. Some results on ∆(∆− c) and I(u)

Let c ∈ R. Throughout this paper we assume that λk < c < λk+1,
k ≥ 1. Let L2(Ω) be a square integrable function space defined on Ω.
Any element u in L2(Ω) can be written as

u =
∑

hkφk with
∑

h2
k < ∞.

We define a subspace H of L2(Ω) as follows

H = {u ∈ L2(Ω)|
∑

|λk(λk − c)| < ∞}.
Then this is a complete normed space with a norm

‖u‖ = [
∑

|λk(λk − c)|h2
k]

1
2 .

Since λk → +∞ and c is fixed, we have
(i) ∆2u + c∆u ∈ H implies u ∈ H.
(ii) ‖u‖ ≥ C‖u‖L2(Ω), for some C > 0.
(iii) ‖u‖L2(Ω) = 0 if and only if ‖u‖ = 0,
which is proved in [1].
Let

H+ = {u ∈ H| hk = 0 if λk(λk − c) < 0},
H− = {u ∈ H| hk = 0 if λk(λk − c) > 0}.

Then H = H−⊕H+, for u ∈ H, u = u−+u+ ∈ H−⊕H+. Let P+ be the
orthogonal projection on H+ and P− be the orthogonal projection on
H−. We can wtite P+u = u+, P−u = u−, for u ∈ H. By (g1) and (g2),
I is well defined. We note that (g3) implies the existence of positive
constants a1, a2, a3 such that

1

µ
(ξg(ξ) + a1) ≥ G(ξ) + a2 ≥ a3|ξ|µ for ξ ∈ R. (2.1)

By the following Lemma 2.1, I ∈ C1(H, R) and I is Fréchet differen-
tiable in H, which is proved in Appendix B in [9].:

Lemma 2.1. Assume that λk < c < λk+1, k ≥ 1, and g satisfies
(g1) − (g4). Then I(u) is continuous and Fréchet differentiable in H
with Fréchet derivative

∇I(u)h =

∫

Ω

[∆u ·∆h− c∇u · ∇h− a(x)g(u)h]dx. (2.2)
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If we set

K(u) =

∫

Ω

a(x)G(u)dx,

then K ′(u) is continuous with respect to weak convergence, K ′(u) is
compact, and

K ′(u)h =

∫

Ω

a(x)g(u)hdx for all h ∈ H,

this implies that I ∈ C1(H,R) and K(u) is weakly continuous.

Lemma 2.2. Assume that λk < c < λk+1, k ≥ 1, g satisfies (g1) −
(g4). If g(u)u − µG(u) is bounded or there exists an ε > 0 such that∫

Ω− a−(x)dx < ε, then I(u) satisfies the Palais-Smale condition.

Proof. We assume that g(u)u − µG(u) is bounded or there exists an
ε > 0 such that

∫
Ω− a−(x)dx < ε. Suppose that (um) is a sequence with

I(um) ≤ M and I ′(um) → 0 as m → ∞. Then by (g2), (g3), Hölder
inequality and Sobolev Embedding Theorem, for large m and µ > 2 with
u = um, we have

M +
1

2
‖u‖ ≥ I(u)− 1

2
I ′(u)u =

∫

Ω

[
1

2
a(x)g(u)u− a(x)G(u)]dx

=

∫

Ω

a+(x)[
1

2
g(u)u−G(u)]−

∫

Ω

a−(x)[
1

2
g(u)u−G(u)]

≥
(

1

2
− 1

µ

)
µ

∫

Ω

a+(x) ·G(u)

−max
Ω
|1
2
g(u)u−G(u)|

∫

Ω−
a−(x)dx

≥
(

1

2
− 1

µ

)
µ

∫

Ω

a+(x) · (A1e
|u|α1 −B1

)

−max
Ω
|1
2
g(u)u−G(u)|

∫

Ω−
a−(x)dx.

Thus if 1
2
g(u)u − G(u) is bounded or there exists an ε > 0 such that∫

Ω− a−(x) < ε, then we have

1 + ‖u‖ ≥ M1

∫

Ω

e|u|
α1 . (2.3)

Moreover since
|I ′(um)ϕ| ≤ ‖ϕ‖ (2.4)
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for large m and all ϕ ∈ H, choosing ϕ = u+
m ∈ H+ gives

‖u+
m‖2 =

∫

Ω

(
∆2um + c∆um

) · u+
m =

∫

Ω

a(x)g(um)u+
m

≤
∫

Ω

|a(x)||g(um)||um| ≤ ‖a‖∞
∫

Ω

A0e
φ(um)|um|

≤ C1

∫

Ω

eφ(um)|um|.

Taking ϕ = −u−m in (2.4) yields

‖u−m‖2 =

∫

Ω

(
∆2um + c∆um

) · (−u−m)

=

∫

Ω

a(x)g(um) · (−u−m)

≤
∫

Ω

|a(x)||g(um)||um|

≤ ‖a‖∞
∫

Ω

eφ(um)|um|

≤ C2

∫

Ω

eφ(um)|um|.

Thus, by (2.3), we have

‖um‖2 = ‖u+
m‖2 + ‖u−m‖2

≤ M2

∫

Ω

eφ(um)|um|

≤ M3

∫

Ω

(|um|+ |um|(u2
mφ(um)u−2

m ) +
u4

m

2
φ2

um
u−4

m + . . .)

≤ M4

∫

Ω

e|um|α1

≤ M5 (1 + ‖um‖)
since u2

mφ(um)u−2
m ) + u4

m

2
φ2

um
u−4

m + . . . → 0 as |um| → ∞, from which
the boundedness of (um) follows. Thus (um) converges weakly in H.
Since P±I ′(um) = ±P±um + P±P̃(um) with P̃ compact and the weak
convergence of P±um imply the strong convergence of P±um and hence
(PS) condition holds.
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3. Proof of Theorem 1.1 (i)

Let H be a Hilbert space and let

Hk = span{φ1, . . . , φk}.
Then Hk is a subspace of H such that

H = ⊕k∈NHk and H = Hk ⊕H⊥
k .

Let

Br = {u ∈ H| ‖u‖ ≤ r},
Q = (B̄R ∩Hk)⊕ {re| 0 < r < R}.

Now we recall the generalized mountain pass Theorem in [9] which is a
crucial role for the proof of main results:

Theorem 3.1. (Generalized Mountain Pass Theorem) Let H = V ⊕
X, where H is a real Banach space and V 6= {0} and is finite dimensional.
Suppose that I ∈ C1(H, R), satisfies (P.S.) condiion, and
(i) there are constants ρ, α > 0 and a bounded neighborhood Bρ of 0
such that I|∂Bρ∩X ≥ α, and
(ii) there is an e ∈ ∂B1∩X and R > ρ such that if Q = (B̄R∩V )⊕{re| 0 <
r < R}, then I|∂Q ≤ 0.
Then I possesses a critical value b ≥ α. Moreover b can be characterized
as

b = inf
γ∈Γ

max
u∈Q

I(γ(u)),

where

Γ = {γ ∈ C(Q̄,H)| γ = id on ∂Q}.
The following lemma show that I(u) satisfies the generalized moun-

tain pass geometrical assumptions:

Lemma 3.1. Assume that λk < c < λk+1 and g satisfies (g1) − (g4).
Then
(i) there are constants ρ > 0, α > 0 and a bounded neighborhood Bρ of
0 such that I|∂Bρ∩H⊥

k
≥ α, and

(ii) there is an e ∈ ∂B1 ∩H⊥
k and R > ρ such that I|∂Q ≤ 0, and

(iii) there exists u0 ∈ H such that ‖u0‖ > ρ and I(u0) ≤ 0.
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Proof. (i) Let u ∈ H⊥
k . Then we have

∫

Ω

(∆2u + c∆u)udx ≥ λk+1(λk+1 − c)‖u‖2
L2(Ω) > 0.

Thus by (g4), (2.1) and the Hölder inequality, we have

I(u) =
1

2
‖P+u‖2 − 1

2
‖P−u‖2 −

∫

Ω

a(x)G(u)

≥ 1

2
‖P+u‖2 − ‖a‖∞

∫

Ω

C1|u|µ

≥ 1

2
‖P+u‖2 − ‖a‖∞C ′

1‖u‖µ

for C1, C
′
1 > 0. Since µ > 2, there exist ρ > 0 and α > 0 such that if

u ∈ ∂Bρ, then I(u) ≥ α.
(ii) Let u ∈ (B̄r ∩ Hk) ⊕ {re| 0 < r}. Then u = v + w, v ∈ Br ∩ Hk,
w = re. We note that

if v ∈ Hk,

∫

Ω

(∆2v + c∆v)vdx ≤ λk(λk − c)‖v‖2
L2(Ω) < 0.

Thus we have

I(u) =
1

2
r2 − 1

2
‖P−v‖2 −

∫

Ω

a(x)G(v + re)

≤ 1

2
r2 +

1

2
(λk(λk − c))‖v‖2

L2(Ω) −
∫

Ω+

a(x)(A1e
|v+re|α1 −B1).

Since µ > 2, there exists R > 0 such that if u = v + re ∈ Q = (B̄R ∩
Hk)⊕ {re| 0 < r < R}, then I(u) < 0.
(iii) follows from (ii).

Proof of Theorem 1.1 (i)
By Lemma 2.1 and Lemma 2.2, I(u) ∈ C1(H,R) and satisfies the Palais-
Smale condition. By Lemma 3.1, there are constants ρ > 0, α > 0 and
a bounded neighborhood Bρ of 0 such that I|∂Bρ∩H⊥

k
≥ α, and there is

an e ∈ ∂B1 ∩H⊥
k and R > ρ such that if u ∈ Q = (B̄R ∩Hk)⊕ {re| 0 <

r < R}, then I|u∈∂Q(u) ≤ 0, and there exists u0 ∈ H such that ‖u0‖ > ρ
and I(u0) ≤ 0. By the generalized mountain pass theorem, I(u) has a
critical value b ≥ α. Moreover b can be characterized as

b = inf
γ∈Γ

max
u∈Q

I(γ(u)),
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where

Γ = {γ ∈ C(Q̄,H)| γ = id on ∂Q}.
We denote by ũ a critical point of I such that I(ũ) = b. We claim that
there exists a constant C > 0 such that

‖a+(x)
1
µ ũ‖L2(Ω) ≤ C

(
1 + L

∫

Ω−
a−(x)dx

) 1
µ

,

where L = max
Ω
|1
2
g(ũ)ũ−G(ũ)|.

In fact, we have

b ≤ max I(tu0), 0 ≤ t ≤ 1,

and

I(tu0) = t2
(

1

2
‖P+u0‖2 − 1

2
‖P−u0‖2

)
−

∫

Ω

a(x)G(tu0)dx

≤ t2‖u0‖2 −
∫

Ω

a+(x)G(tu0)dx +

∫

Ω

a−(x)G(tu0)dx

≤ t2‖u0‖2 − a3t
µ

∫

Ω

a+(x)uµ
0 + a4

∫

Ω

a+(x) + a5t
µ

∫

Ω

a−(x)uµ
0

= Ct2 − Ctµ + C + C ′tµ.

Since 0 ≤ t ≤ 1, b is bounded: b < C̃.
By (2.1), we can write

b = I(ũ)− 1

2
I ′(ũ)ũ

=

∫

Ω

a(x)

(
1

2
g(ũ)ũ−G(ũ)

)
dx

=

∫

Ω

a+(x)

(
1

2
g(ũ)ũ−G(ũ)

)
dx−

∫

Ω

a−(x)

(
1

2
g(ũ)ũ−G(ũ)

)
dx

≥
(

1

2
− 1

µ

) ∫

Ω

a+(x)g(ũ)ũ−max
Ω
|1
2
g(ũ)ũ−G(ũ)|

∫

Ω−
a−(x)dx

≥
(

1

2
− 1

µ

)
µ

∫

Ω

a+(x) (a3|ũ|µ − a4)− L

∫

Ω−
a−(x)dx,

where L = max
Ω
|1
2
g(ũ)ũ−G(ũ)|. Thus we have

C

(
1 + L

∫

Ω−
a−(x)dx

)
≥

∫

Ω

a+(x)|ũ|µ
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≥
[ ∫

Ω

(
a+(x)

1
µ |ũ|

)2
]µ

2

, (3.1)

from which we can conclude that ũ is bounded. In fact, we suppose that
ũ is not bounded. Then for any R > 0, |ũ| ≥ R. Thus we have∫

Ω

a+(x)|ũ|µ ≥ Rµ

∫

Ω

a+(x)dx

for any R, which contradicts to the fact (3.1) and the proof of Theorem
1.1 (i) is completed.

4. Proof of Theorem 1.1 (ii)

Assume that 1
2
g(u)u−G(u) is not bounded and there exists an ε > 0

such that
∫
Ω− a−(x, t) < ε. By Lemma 2.1 and Lemma 2.2, I ∈ C1(H,R)

and satisfies the Palais-Smale condition. By Lemma 3.1 and generalized
mountain pass theorem, I(u) has a critical value b with critical point ũ
such that I(ũ) = b. If

∫
Ω− a−(x)dx is sufficiently small, by (3.1), we have

∫

Ω

a+(x)|ũ|µ ≤ C

for C > 0, from which we can conclude that ũ is bounded and the proof of
Theorem 1.2(i) is completed. Next we shall prove Theorem 1.2 (ii). We
may assume that Rn < Rn+1 for all n ∈ N . Let us set Dn = BRn ∩Hn,
∂Dn = ∂BRn ∩Hn.

Lemma 4.1. Assume that g satisfies (g1)-(g4). Then there exists an
Rn > 0 such that

I(u) ≤ 0 for u ∈ Hn\BRn , (4.1)

where BRn = {u ∈ H| ‖u‖ ≤ Rn}.
Proof. Let us choose ψ ∈ H such that ‖ψ‖ = 1, ψ ≥ 0 in Ω and

supp(ψ) ⊂ Ω+. Then, by (g3), (2.1) and the Hölder inequality, we have

I(tψ) =
1

2
‖P+tψ‖2 − 1

2
‖P−tψ‖2 −

∫

Ω

a(x)G(tψ)

≤ 1

2
t2 − ‖a‖∞

∫

Ω

C1t
µψµ + ‖a‖∞C2

≤ 1

2
t2 − tµ‖a‖∞C ′

1ψ
µ + ‖a‖∞C2
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for C1, C ′
1 and C2 > 0. Since µ > 2, there exist tn great enough for each

n and an Rn > 0 such that un = tnψ and I(un) < 0 if un ∈ Hn\BRn and
‖un‖ > Rn, so the lemma is proved

Let us set

Γn = {γ ∈ C([0, 1], H)| γ(0) = 0 and γ(1) = un}
and

bn = inf
γ∈Γn

max
[0,1]

I(γ(u)) n ∈ N.

Proof of Theorem 1.2 (ii)
We assume that g(u)u− µG(u) is not bounded and there exists an ε >
0 such that

∫
Ω− a−(x)dx < ε. By Lemma 2.1 and Lemma 2.2, I ∈

C1(H, R) and satisfies the Palais-Smale condition. By Lemma 4.1, there
exists an Rn > 0 such that I(un) ≤ 0 for un ∈ Hn\BRn . We note that
I(0) = 0. By Lemma 4.1 and the generalized mountain pass theorem,
for n large enough, bn > 0 is a critical value of I and limn→∞ bn = +∞.
Let ũn be a critical point of I such that I(ũn) = bn. Then for each real
number M , maxΩ|ũn(x)| ≥ M . In fact, by contradiction , ∆2u + c∆u =
a(x)g(u) and maxΩ|ũn(x)| ≤ K imply that

I(ũn) ≤ max|ũn|≤K(
1

2
g(ũn)ũn −G(ũn))

∫

Ω

||a(x)|,

which means that bn is bounded. This is absurd to the fact that limn→∞ bn =
+∞. Thus we complete the proof.
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