GENERALIZATION OF THE SIGN REVERSING INVOLUTION ON THE SPECIAL RIM HOOK TABLEAUX

Jaejin Lee

Abstract

Eğecioğlu and Remmel [1] gave a combinatorial interpretation for the entries of the inverse Kostka matrix K^{-1}. Using this interpretation Sagan and Lee [8] constructed a sign reversing involution on special rim hook tableaux. In this paper we generalize Sagan and Lee's algorithm on special rim hook tableaux to give a combinatorial partial proof of $K^{-1} K=I$.

1. Introduction

Let λ, μ be partitions of a nonnegative integer n. Kostka number $K_{\lambda, \mu}$ is the number of column strict tableaux T of shape $\operatorname{sh}(T)=\lambda$ and $\operatorname{content}(T)=\mu$. For fixed n, we collect these numbers into the Kostka matrix $K=\left(K_{\lambda, \mu}\right)$. If we use the reverse lexicographic order on partitions, K is an upper unitriangular matrix, and so K is invertible.

In [1] Eğecioğlu and Remmel gave a combinatorial interpretation for the entries of the inverse Kostka matrix K^{-1} and used the combinatorial interpretation to give a proof of the fact that $K K^{-1}=I$ using a sign reversing involution, but were not able to do the same thing for the identity $K^{-1} K=I$.

In [8] Sagan and Lee constructed an algorithmic sign-reversing involution which proves that the last column of $K^{-1} K=I$ is correct. Parts of Sagan and Lee' procedure are reminiscent of the lattice path involution of Lindström [5] and Gessel-Viennot [3, 4] as well as the rim hook Robinson-Schensted algorithm of White [11] and Stanton-White [10].

[^0]In this paper we generalize Sagan and Lee's algorithm on special rim hook tableaux, which gives a combinatorial partial proof of $K^{-1} K=I$.

2. Definitions and combinatorial interpretation for $K_{\mu, \lambda}^{-1}$

In this section we describe some definitions necessary for later. See [2], [6], [7] or [9] for definitions and notations not described here.

Definition 2.1. A partition λ of a positive integer n, denoted $\lambda \vdash n$, is a weakly decreasing sequence of positive integers summing to n. We say each term λ_{i} is a part of λ and the number of nonzero parts is called the length of λ and is written $\ell=\ell(\lambda)$. In addition, we will use the notation $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \ldots, n^{m_{n}}\right)$ which means that the integer j appears m_{j} times in λ.

Definition 2.2. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ be a partition. The Ferrers diagram D_{λ} of λ is the array of cells or boxes arranged in rows and columns, λ_{1} in the first row, λ_{2} in the second row, etc., with each row left-justified. That is,

$$
D_{\lambda}=\left\{(i, j) \in \mathbf{Z}^{2} \mid 1 \leq i \leq \ell(\lambda), 1 \leq j \leq \lambda_{i}\right\}
$$

where we regard the elements of D_{λ} as a collection of boxes in the plane with matrix-style coordinates.

Definition 2.3. If λ, μ are partitions with $D_{\lambda} \supseteq D_{\mu}$, the skew shape $D_{\lambda / \mu}$ or just λ / μ is defined as the set-theoretic difference $D_{\lambda} \backslash D_{\mu}$. Thus

$$
D_{\lambda / \mu}=\left\{(i, j) \in \mathbf{Z}^{2} \mid 1 \leq i \leq \ell(\lambda), \mu_{i}<j \leq \lambda_{i}\right\} .
$$

Figure 2.1 shows the Ferrers diagram D_{λ} and skew shape $D_{\lambda / \mu}$, respectively, when $\lambda=(5,4,2,1) \vdash 12$ and $\mu=(2,2,1) \vdash 5$.

Figure 2.1

Definition 2.4. Let λ be a partition. A tableau T of shape λ is an assignment $T: D_{\lambda} \rightarrow \mathbf{P}$ of positive integers to the cells of λ. The content of the tableau T, denoted by content (T), is the finite nonnegative vector whose i th component is the number of entries i in T.

A tableau T of shape λ is said to be column strict if it satisfies the following two conditions:
(i) $T(i, j) \leq T(i, j+1)$, i.e., the entries increase weakly along the rows of λ from left to right.
(ii) $T(i, j)<T(i+1, j)$, i.e., the entries increase strictly along the columns of λ from top to bottom.

In Figure $2.2, T$ is a tableau of shape $(5,4,2,1)$ and S is a column strict tableau of shape $(5,4,2,1)$ and of content $(3,3,1,2,2,1)$.

Figure 2.2

Definition 2.5. For partitions λ and μ of a positive integer n, the Kostka number $K_{\lambda, \mu}$ is the number of column strict tableaux of shape λ and content μ.

If we use the reverse lexicographic order on the set of partitions of a fixed n, the Kostka matrix $K=\left(K_{\lambda, \mu}\right)$ becomes upper unitriangular so that K is invertible.

Definition 2.6. A rim hook H is a skew shape which is connected and contains no 2×2 square of cells. The size of H is the number of cells it contains. The leg length of rim hook $H, \ell(H)$, is the number of vertical edges in H when viewed as in Figure 2.3. We define the sign of a rim hook H to be $\epsilon(H)=(-1)^{\ell(H)}$.

Figure 2.3 shows the rim hook H of size 6 with $\ell(H)=2$ and $\epsilon(H)=$ $(-1)^{2}=1$.

Figure 2.3
Definition 2.7. A rim hook tableau T of shape λ is a partition of the diagram of λ into rim hooks. The type of T is $\operatorname{type}(T)=$ $\left(1^{m_{1}}, 2^{m_{2}}, \ldots, n^{m_{n}}\right)$ where m_{k} is the number of rim hooks in T of size k. We now define the sign of a rim hook tableau T as

$$
\epsilon(T)=\prod_{H \in T} \epsilon(H) .
$$

A rim hook tableau S is called special if each of the rim hooks contains a cell from the first column of λ. We use nodes for the Ferrers diagram and connect them if they are adjacent in the same rim hook as S in Figure 2.4.

Figure 2.4

In Figure 2.4, T is a rim hook tableau of shape $(5,4,2,1)$, type $(T)=$ $\left(1^{2}, 2,4^{2}\right)$ and $\epsilon(T)=(-1)^{1} \cdot(-1)^{1} \cdot(-1)^{0} \cdot(-1)^{0} \cdot(-1)^{0}=1$, while S is a special rim hook tableau with shape $(5,3,2,1,1)$, type $(S)=(2,4,6)$ and $\epsilon(S)=(-1)^{0} \cdot(-1)^{1} \cdot(-1)^{2}=-1$.

We can now state Egecioğlu and Remmel's interpretation for the entries of the inverse of Kostka matrix.

Theorem 2.8 (Eğecioğlu and Remmel[1]). The entries of the inverse Kostka matrix are given by

$$
K_{\mu, \lambda}^{-1}=\sum_{S} \epsilon(S)
$$

where the sum is over all special rim hook tableaux S with shape λ and type μ.

3. Sagan and Lee's sign reversing involution

In this section we introduce Sagan and Lee's sign reversing involution on the special rim hook tableaux. See [8] for details.

Let S be a special rim hook tableau with $t(S)=\mu$, and T be a standard Young tableau of the same shape as S, where μ is a partition of n. Sagan and Lee exhibited a sign reversing involution I on such pairs (S,T).

If the cell of n in T corresponds to a hook of size one in S, I can be clearly defined by induction. So for the rest of this section assume that the cell containing n in T corresponds to a cell in a hook of at least two cells in S.

To describe I under this assumption, a rooted Ferrers diagram is defined as a Ferrers diagram where one of the nodes has been marked. Marked cell will be indicated in the figures by making the distinguished node a square.

Now associate with any pair (S, T) a rooted special rim hook tableau \dot{S} by rooting S at the node where the entry n occurs in T. A sign reversing involution ι will be defined on the set of rooted special rim hook tableaux of given type which are obtainable in this way. In addition, ι will have the property that if $\iota(\dot{S})=\dot{S}^{\prime}$ and $\dot{S}, \dot{S}^{\prime}$ have roots r, r^{\prime} respectively, then

$$
\begin{equation*}
\operatorname{sh}(\dot{S})-r=\operatorname{sh}\left(\dot{S}^{\prime}\right)-r^{\prime} \tag{1}
\end{equation*}
$$

where the minus sign represents set-theoretic difference of diagrams. The full involution $I(S, T)=\left(S^{\prime}, T^{\prime}\right)$ will then be the composition

$$
(S, T) \longrightarrow \dot{S} \xrightarrow{\iota} \dot{S}^{\prime} \longrightarrow\left(S^{\prime}, T^{\prime}\right)
$$

where S^{\prime} is obtained from \dot{S}^{\prime} by forgetting about the root and T^{\prime} is obtained by replacing the root of \dot{S}^{\prime} by n and leaving the numbers $1,2, \ldots, n-1$ in the same positions as they were in T. Note that (1) guarantees that T^{\prime} is well defined. Furthermore, it is clear from construction that I will be a sign reversing involution because ι is. Even though ι has not been fully defined, an example of the rest of the algorithm can be given as follows. See [8] for the definition of ι. Given (S, T), Figure 3.1 shows how a sign reversing involution I works on (S, T).

Figure 3.1
Theorem 3.1 (Sagan and Lee[8]). Let μ be a partition of n with $\mu \neq 1^{n}$. Let

$$
\Gamma=\{(S, T) \mid t(S)=\mu, \operatorname{sh}(S)=\operatorname{sh}(T)\}
$$

where S is a special rim hook tableau and T is a standard Young tableau. Then I defined in the above gives a sign reversing involution on Γ.

4. Generalization of the Sagan and Lee's sign reversing involution

In this section we generalize Sagan and Lee's algorithm on special rim hook tableaux to get a combinatorial partial proof of $K^{-1} K=I$.

We first define a linear extension tableau $e(T)$ for a column strict tableau T.

Definition 4.1. Let T be a column strict tableau. The linear extension tableau $e(T)$ is the standard Young tableau of the same shape as T defined in the following way.
(i) If $T(i, j)<T(k, l)$, define $e(T)(i, j)<e(T)(k, l)$.
(ii) Assume $T(i, j)=T(k, l)$. Define $e(T)(i, j)<e(T)(k, l)$ if $i<k$ or $i=k, j<l$.
See Figure 4.1 for an example of the linear extension tableau $e(T)$ of T.

$e(T)=$

Figure 4.1

We are now ready to describe our main theorem.
Theorem 4.2. Let μ and $\nu=\left(1^{m_{1}}, 2^{m_{2}}\right)$ be partitions of n. Then

$$
\begin{equation*}
\sum_{(S, T)} \epsilon(S)=\delta_{\mu, \nu} \tag{2}
\end{equation*}
$$

the sum being all pairs (S, T) where S is a special rim hook tableau with $t(S)=\mu$ and T is a column strict tableau of content $(T)=\nu$ with the same shape as S, and where $\delta_{\mu, \nu}$ is the Kronecker's delta.

Proof. We will prove this identity by exhibiting a sign reversing involution I^{*} on such pairs (S, T), where $(S, T) \neq\left(S_{0}, T_{0}\right)$. Here I is the involution defined in Section 3 and

$$
\left(S_{0}, T_{0}\right)=\left(\begin{array}{cccc}
\bullet & \bullet & 1 & 1 \\
\bullet & \bullet & 2 & 2 \\
\vdots & & \vdots & \\
\bullet & \bullet & k & k \\
\bullet & & k+1 \\
\bullet & & k+2 \\
\vdots & & \vdots & \\
\bullet & & m
\end{array}\right)
$$

Figure 4.2
Suppose first that the cell of the biggest entry m in T corresponds to a hook of size one in S. Then since S is special, this cell is at the end of the first column. In this case, remove that cell from both S and T to form \bar{S} and \bar{T} respectively. Now we can assume, by induction, that $I^{*}(\bar{S}, \bar{T})=\left(\bar{S}^{\prime}, \bar{T}^{\prime}\right)$ has been defined. So let $I^{*}(S, T)=\left(S^{\prime}, T^{\prime}\right)$ where S^{\prime} is \bar{S}^{\prime} with a hook of size 1 added to the end of the first column and T^{\prime} is \bar{T}^{\prime} with a cell labeled m added to the end of the first column. Clearly this will result in a sign reversing involution as long as this was true for pairs with $n-1$ cells. So for the rest of this section we will also assume that the cell containing the biggest entry in T corresponds to a cell in a hook of at least two cells in S.

With these assumptions let ($S^{\prime \prime}, T^{\prime \prime}$) be the image of $(S, e(T))$ under the involution I, i.e., $\left(S^{\prime \prime}, T^{\prime \prime}\right)=I(S, e(T))$. We divide into the following two cases.

Case 1 If there is a column strict tableau T^{\prime} of content ν such that $e\left(T^{\prime}\right)=$ $T^{\prime \prime}$, define $I^{*}(S, T)=\left(S^{\prime}, T^{\prime}\right)$ with $S^{\prime}=S^{\prime \prime}$. See Figure 4.3.

Figure 4.3
Case 2 Assume now there is no column strict tableau T^{\prime} of content ν such that $e\left(T^{\prime}\right)=T^{\prime \prime}$. Under this assumption let $b_{n-1}=(i, j)$ and $b_{n}=(k, l)$ be the cells in $e(T)$ whose entries are $n-1$ and n, respectively.
(2-a) If $i<k, j \neq l$ since there is no column strict tableau T^{\prime} such that $e\left(T^{\prime}\right)=T^{\prime \prime}$. Let T_{1} be the standard Young tableau obtained from $e(T)$ by exchanging entries $n-1$ and n, and let $\left(S_{1}^{\prime \prime}, T_{1}^{\prime \prime}\right)=I\left(S, T_{1}\right)$. If T_{1}^{\prime} is the column strict tableau of content ν such that $e\left(T_{1}^{\prime}\right)=T_{1}^{\prime \prime}$, define $I^{*}(S, T)=\left(S_{1}^{\prime}, T_{1}^{\prime}\right)$ with $S_{1}^{\prime}=S_{1}^{\prime \prime}$. See Figure 4.4.

Figure 4.4
(2-b) If $i=k$, then $l=j+1$ and only two cells b_{n-1}, b_{n} are in the last row of $e(T)$. Hence cells of the entries $n-1$ and n in $e(T)$ corresponds to a hook κ of size two which are in last row of S. See Figure 4.5. In this case, remove last hook κ from both S to form \bar{S}, and remove two cells b_{n-1}, b_{n} from $e(T)$ to form \bar{T}.

Let $I(\bar{S}, \bar{T})=\left(\bar{S}^{\prime}, \bar{T}^{\prime}\right)$. We define S_{2} as \bar{S}^{\prime} with a hook of size 2 added to the end of the first column, and define T_{2} as \bar{T}^{\prime} with two cells labeled $n-1, n$ added to the end of the first column. Finally let $I\left(S_{2}, T_{2}\right)=\left(S_{2}^{\prime \prime}, T_{2}^{\prime \prime}\right)$. If there is a column strict tableau T_{2}^{\prime} such that $e\left(T_{2}^{\prime}\right)=T_{2}^{\prime \prime}$, define $I^{*}(S, T)=\left(S_{2}^{\prime}, T_{2}^{\prime}\right)$ with $S_{2}^{\prime}=S_{2}^{\prime \prime}$.

$$
T=\begin{array}{lll}
1 & 1 & 2 \\
2 & 3 & 3 \\
4 & 4 &
\end{array}
$$

$$
e(T)=\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 &
\end{array}
$$

$$
\bar{T}=\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}
$$

$$
\bar{S}^{\prime}=\stackrel{\bullet \bullet \bullet}{\bullet}
$$

$$
\bar{T}^{\prime}=\begin{array}{llll}
1 & 2 & 3 & 6 \\
4 & 5 & &
\end{array}
$$

$$
T_{2}=\begin{array}{llll}
1 & 2 & 3 & 6 \\
4 & 5 & &
\end{array}
$$

$$
7
$$

8

Figure 4.5
Clearly I^{*} is also a sign reversing involution since I is a sign reversing involution. Hence all terms $\epsilon(S)$ in the summation of (2) are cancelled out except $\epsilon\left(S_{0}\right)$, which is 1 . This fact implies the identity in (2).

References

[1] Ö. Eğecioğlu and J. Remmel, A combinatorial interpretation of the inverse Kostka matrix, Linear Multilinear Algebra 26(1990), 59-84.
[2] W. Fulton, "Young Tableaux", London Mathematical Society Student Texts 35, Cambridge University Press, Cambridge, 1999.
[3] I. Gessel and G. Viennot, Binomial determinants, paths, and hook length formulae, Adv. Math. 58 (1985), 300-321.
[4] I. Gessel and G. Viennot, Determinants, paths, and plane partitions, in preparation.
[5] B. Lindström, On the vector representation of induced matroids, Bull. Lond. Math. Soc. 5 (1973), 85-90.
[6] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd edition, Oxford University Press, Oxford, 1995.
[7] B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd edition, Springer-Verlag, New York, 2001.
[8] B. Sagan and Jaejin Lee, An algorithmic sign-reversing involution for special rim-hook tableaux, J. Algorithms 59(2006), 149-161.
[9] R. P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, Cambridge, 1999.
[10] D. Stanton and D. White, A Schensted correspondence for rim hook tableaux, J. Combin. Theory Ser. A40 (1985), 211-247.
[11] D. White, A bijection proving orthogonality of the characters of S_{n}, Adv. Math. 50 (1983), 160-186.

Department of Mathematics
Hallym University
Chunchon 200-702, Korea
E-mail: jjlee@hallym.ac.kr

[^0]: Received August 16, 2010. Revised September 7, 2010. Accepted September 10, 2010.

 2000 Mathematics Subject Classification: 05E10.
 Key words and phrases: sign reversing involution, Kostka number, special rim hook tableaux.

