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GENERALIZATION OF THE SIGN REVERSING

INVOLUTION ON THE SPECIAL RIM HOOK

TABLEAUX

Jaejin Lee

Abstract. Eğecioğlu and Remmel [1] gave a combinatorial inter-
pretation for the entries of the inverse Kostka matrix K−1. Using
this interpretation Sagan and Lee [8] constructed a sign reversing
involution on special rim hook tableaux. In this paper we generalize
Sagan and Lee’s algorithm on special rim hook tableaux to give a
combinatorial partial proof of K−1K = I.

1. Introduction

Let λ, µ be partitions of a nonnegative integer n. Kostka number
Kλ,µ is the number of column strict tableaux T of shape sh(T ) = λ
and content(T ) = µ. For fixed n, we collect these numbers into the
Kostka matrix K = (Kλ,µ). If we use the reverse lexicographic order on
partitions, K is an upper unitriangular matrix, and so K is invertible.

In [1] Eğecioğlu and Remmel gave a combinatorial interpretation for
the entries of the inverse Kostka matrix K−1 and used the combinatorial
interpretation to give a proof of the fact that KK−1 = I using a sign
reversing involution, but were not able to do the same thing for the
identity K−1K = I.

In [8] Sagan and Lee constructed an algorithmic sign-reversing invo-
lution which proves that the last column of K−1K = I is correct. Parts
of Sagan and Lee’ procedure are reminiscent of the lattice path involu-
tion of Lindström [5] and Gessel-Viennot [3, 4] as well as the rim hook
Robinson-Schensted algorithm of White [11] and Stanton-White [10].
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In this paper we generalize Sagan and Lee’s algorithm on special rim
hook tableaux, which gives a combinatorial partial proof of K−1K = I.

2. Definitions and combinatorial interpretation for K−1
µ,λ

In this section we describe some definitions necessary for later. See
[2], [6], [7] or [9] for definitions and notations not described here.

Definition 2.1. A partition λ of a positive integer n, denoted λ ` n,
is a weakly decreasing sequence of positive integers summing to n. We
say each term λi is a part of λ and the number of nonzero parts is called
the length of λ and is written ` = `(λ). In addition, we will use the
notation λ = (1m1 , 2m2 , . . . , nmn) which means that the integer j appears
mj times in λ.

Definition 2.2. Let λ = (λ1, . . . , λ`) be a partition. The Ferrers
diagram Dλ of λ is the array of cells or boxes arranged in rows and
columns, λ1 in the first row, λ2 in the second row, etc., with each row
left-justified. That is,

Dλ = {(i, j) ∈ Z2 | 1 ≤ i ≤ `(λ), 1 ≤ j ≤ λi},
where we regard the elements of Dλ as a collection of boxes in the plane
with matrix-style coordinates.

Definition 2.3. If λ, µ are partitions with Dλ ⊇ Dµ, the skew shape
Dλ/µ or just λ/µ is defined as the set-theoretic difference Dλ \Dµ. Thus

Dλ/µ = {(i, j) ∈ Z2 | 1 ≤ i ≤ `(λ), µi < j ≤ λi}.
Figure 2.1 shows the Ferrers diagram Dλ and skew shape Dλ/µ, re-

spectively, when λ = (5, 4, 2, 1) ` 12 and µ = (2, 2, 1) ` 5.

Dλ = Dλ/µ =

Figure 2.1
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Definition 2.4. Let λ be a partition. A tableau T of shape λ is an
assignment T : Dλ → P of positive integers to the cells of λ. The content
of the tableau T , denoted by content(T ), is the finite nonnegative vector
whose ith component is the number of entries i in T .

A tableau T of shape λ is said to be column strict if it satisfies the
following two conditions:

(i) T (i, j) ≤ T (i, j +1), i.e., the entries increase weakly along the rows
of λ from left to right.

(ii) T (i, j) < T (i + 1, j), i.e., the entries increase strictly along the
columns of λ from top to bottom.

In Figure 2.2, T is a tableau of shape (5, 4, 2, 1) and S is a column
strict tableau of shape (5, 4, 2, 1) and of content (3, 3, 1, 2, 2, 1).

T =
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Figure 2.2

Definition 2.5. For partitions λ and µ of a positive integer n, the
Kostka number Kλ,µ is the number of column strict tableaux of shape λ
and content µ.

If we use the reverse lexicographic order on the set of partitions of a
fixed n, the Kostka matrix K = (Kλ,µ) becomes upper unitriangular so
that K is invertible.

Definition 2.6. A rim hook H is a skew shape which is connected
and contains no 2 × 2 square of cells. The size of H is the number of
cells it contains. The leg length of rim hook H, `(H), is the number of
vertical edges in H when viewed as in Figure 2.3. We define the sign of
a rim hook H to be ε(H) = (−1)`(H).

Figure 2.3 shows the rim hook H of size 6 with `(H) = 2 and ε(H) =
(−1)2 = 1.
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H =

u
u u

u u u

Figure 2.3

Definition 2.7. A rim hook tableau T of shape λ is a partition
of the diagram of λ into rim hooks. The type of T is type(T ) =
(1m1 , 2m2 , . . . , nmn) where mk is the number of rim hooks in T of size
k. We now define the sign of a rim hook tableau T as

ε(T ) =
∏
H∈T

ε(H).

A rim hook tableau S is called special if each of the rim hooks contains
a cell from the first column of λ. We use nodes for the Ferrers diagram
and connect them if they are adjacent in the same rim hook as S in
Figure 2.4.
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Figure 2.4

In Figure 2.4, T is a rim hook tableau of shape (5, 4, 2, 1), type(T ) =
(12, 2, 42) and ε(T ) = (−1)1 · (−1)1 · (−1)0 · (−1)0 · (−1)0 = 1, while S is
a special rim hook tableau with shape (5, 3, 2, 1, 1), type(S) = (2, 4, 6)
and ε(S) = (−1)0 · (−1)1 · (−1)2 = −1.

We can now state Eğecioğlu and Remmel’s interpretation for the en-
tries of the inverse of Kostka matrix.

Theorem 2.8 (Eğecioğlu and Remmel[1]). The entries of the inverse
Kostka matrix are given by

K−1
µ,λ =

∑
S

ε(S)
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where the sum is over all special rim hook tableaux S with shape λ and
type µ.

3. Sagan and Lee’s sign reversing involution

In this section we introduce Sagan and Lee’s sign reversing involution
on the special rim hook tableaux. See [8] for details.

Let S be a special rim hook tableau with t(S) = µ, and T be a
standard Young tableau of the same shape as S, where µ is a partition
of n. Sagan and Lee exhibited a sign reversing involution I on such pairs
(S, T ).

If the cell of n in T corresponds to a hook of size one in S, I can be
clearly defined by induction. So for the rest of this section assume that
the cell containing n in T corresponds to a cell in a hook of at least two
cells in S.

To describe I under this assumption, a rooted Ferrers diagram is
defined as a Ferrers diagram where one of the nodes has been marked.
Marked cell will be indicated in the figures by making the distinguished
node a square.

Now associate with any pair (S, T ) a rooted special rim hook tableau Ṡ
by rooting S at the node where the entry n occurs in T . A sign reversing
involution ι will be defined on the set of rooted special rim hook tableaux
of given type which are obtainable in this way. In addition, ι will have
the property that if ι(Ṡ) = Ṡ ′ and Ṡ, Ṡ ′ have roots r, r′ respectively, then

(1) sh(Ṡ)− r = sh(Ṡ ′)− r′

where the minus sign represents set-theoretic difference of diagrams. The
full involution I(S, T ) = (S ′, T ′) will then be the composition

(S, T ) −→ Ṡ
ι−→ Ṡ ′ −→ (S ′, T ′)

where S ′ is obtained from Ṡ ′ by forgetting about the root and T ′ is
obtained by replacing the root of Ṡ ′ by n and leaving the numbers
1, 2, . . . , n − 1 in the same positions as they were in T . Note that (1)
guarantees that T ′ is well defined. Furthermore, it is clear from construc-
tion that I will be a sign reversing involution because ι is. Even though
ι has not been fully defined, an example of the rest of the algorithm can
be given as follows. See [8] for the definition of ι. Given (S, T ), Figure
3.1 shows how a sign reversing involution I works on (S, T ).
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Figure 3.1

Theorem 3.1 (Sagan and Lee[8]). Let µ be a partition of n with
µ 6= 1n. Let

Γ = { (S, T ) | t(S) = µ, sh(S) = sh(T ) },
where S is a special rim hook tableau and T is a standard Young tableau.
Then I defined in the above gives a sign reversing involution on Γ.

4. Generalization of the Sagan and Lee’s sign reversing in-
volution

In this section we generalize Sagan and Lee’s algorithm on special rim
hook tableaux to get a combinatorial partial proof of K−1K = I.

We first define a linear extension tableau e(T ) for a column strict
tableau T .

Definition 4.1. Let T be a column strict tableau. The linear exten-
sion tableau e(T ) is the standard Young tableau of the same shape as T
defined in the following way.

(i) If T (i, j) < T (k, l), define e(T )(i, j) < e(T )(k, l).
(ii) Assume T (i, j) = T (k, l). Define e(T )(i, j) < e(T )(k, l) if i < k or

i = k, j < l.

See Figure 4.1 for an example of the linear extension tableau e(T ) of T .
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Figure 4.1



Generalization of the involution on the special rim hook tableaux 295

We are now ready to describe our main theorem.

Theorem 4.2. Let µ and ν = (1m1 , 2m2) be partitions of n. Then

(2)
∑

(S,T )

ε(S) = δµ,ν

the sum being all pairs (S, T ) where S is a special rim hook tableau with
t(S) = µ and T is a column strict tableau of content (T ) = ν with the
same shape as S, and where δµ,ν is the Kronecker’s delta.

Proof. We will prove this identity by exhibiting a sign reversing in-
volution I∗ on such pairs (S, T ), where (S, T ) 6= (S0, T0). Here I is the
involution defined in Section 3 and

(S0, T0) =
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Figure 4.2

Suppose first that the cell of the biggest entry m in T corresponds to
a hook of size one in S. Then since S is special, this cell is at the end
of the first column. In this case, remove that cell from both S and T
to form S and T respectively. Now we can assume, by induction, that

I∗(S, T ) = (S
′
, T

′
) has been defined. So let I∗(S, T ) = (S ′, T ′) where S ′

is S
′
with a hook of size 1 added to the end of the first column and T ′

is T
′
with a cell labeled m added to the end of the first column. Clearly

this will result in a sign reversing involution as long as this was true for
pairs with n− 1 cells. So for the rest of this section we will also assume
that the cell containing the biggest entry in T corresponds to a cell in a
hook of at least two cells in S.

With these assumptions let (S ′′, T ′′) be the image of (S, e(T )) under
the involution I, i.e., (S ′′, T ′′) = I(S, e(T )). We divide into the following
two cases.
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Case 1 If there is a column strict tableau T ′ of content ν such that e(T ′) =
T ′′, define I∗(S, T ) = (S ′, T ′) with S ′ = S ′′. See Figure 4.3.
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Figure 4.3

Case 2 Assume now there is no column strict tableau T ′ of content ν such
that e(T ′) = T ′′. Under this assumption let bn−1 = (i, j) and
bn = (k, l) be the cells in e(T ) whose entries are n − 1 and n,
respectively.

(2–a) If i < k, j 6= l since there is no column strict tableau T ′

such that e(T ′) = T ′′. Let T1 be the standard Young tableau
obtained from e(T ) by exchanging entries n − 1 and n, and
let (S ′′1 , T ′′

1 ) = I(S, T1). If T ′
1 is the column strict tableau of

content ν such that e(T ′
1) = T ′′

1 , define I∗(S, T ) = (S ′1, T
′
1) with

S ′1 = S ′′1 . See Figure 4.4.
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(2–b) If i = k, then l = j + 1 and only two cells bn−1, bn are in the
last row of e(T ). Hence cells of the entries n− 1 and n in e(T )
corresponds to a hook κ of size two which are in last row of S.
See Figure 4.5. In this case, remove last hook κ from both S
to form S, and remove two cells bn−1, bn from e(T ) to form T .
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Let I(S, T ) = (S
′
, T

′
). We define S2 as S

′
with a hook of size 2

added to the end of the first column, and define T2 as T
′
with

two cells labeled n− 1, n added to the end of the first column.
Finally let I(S2, T2) = (S ′′2 , T ′′

2 ). If there is a column strict
tableau T ′

2 such that e(T ′
2) = T ′′

2 , define I∗(S, T ) = (S ′2, T
′
2)

with S ′2 = S ′′2 .
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Figure 4.5

Clearly I∗ is also a sign reversing involution since I is a sign reversing
involution. Hence all terms ε(S) in the summation of (2) are cancelled
out except ε(S0), which is 1. This fact implies the identity in (2).
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