DOI QR코드

DOI QR Code

Peroxidase/H2O2 조건에서 리그닌 전구물질에 따른 탈수소 중합반응 특성 연구

Study on Dehydrogenative Polymerization of Monolignols by Peroxidase/H2O2

  • 문선주 (서울대학교 농업생명과학대학 산림과학부) ;
  • 김광호 (서울대학교 농업생명과학대학 산림과학부) ;
  • 엄인용 (서울대학교 농업생명과학대학 산림과학부) ;
  • 이수민 (국립산림과학원 화학미생물과) ;
  • 김용환 (광운대학교 화학공학과) ;
  • 최준원 (서울대학교 농업생명과학대학 산림과학부)
  • Moon, Sun-Joo (Dept. Forest Science, CALS, Seoul National University) ;
  • Kim, Kwang-Ho (Dept. Forest Science, CALS, Seoul National University) ;
  • Eom, In-Yong (Dept. Forest Science, CALS, Seoul National University) ;
  • Lee, Soo-Min (Div. Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Kim, Yong-Hwan (Dept. Chemical engineering, Kwangwoon University) ;
  • Choi, Joon-Weon (Dept. Forest Science, CALS, Seoul National University)
  • 투고 : 2009.12.21
  • 심사 : 2010.03.15
  • 발행 : 2010.05.25

초록

본 연구에서는 천연리그닌의 전구물질인 3종의 모노리그놀[p-coumaryl alcohol (PCA), coniferyl alcohol(CA), sinapyl alcohol (SA)]을 이용하여 horseradish peroxidase (HRP, EC. 1.11.1.7)/$H_2O_2$ 조건하에서 dehydrogenative polymers (DHPs)를 제조하였다. 합성한 DHPs와 천연리그닌의 구조적 특성을 비교하기 위해 소나무와 포플라 milled wood lignin (MWL)과 함께 Gel permeation chromatography (GPC)에 의한 분자량 측정과 Derivatization followed by reductive cleavage (DFRC) 분석에 의한 ${\beta}$-O-4 결합 빈도를 측정하였다. DHP 합성 수율은 CA만을 단독으로 주입한 G-DHP가 71%로 가장 높았고 PCA에 의한 H-DHP 수율은 42%로 나타났다. 그러나 horseradish peroxidase/$H_2O_2$ 조건하에서 SA 단독으로는 S-DHP는 전혀 합성되지 않았다. 합성한 DHPs의 분자량(Mw)은 3,000~4,700 범위로 측정되었는데, 이는 침엽수 리그닌인 소나무 MWL (G-type lignin: Mw 7340)의 절반 정도였고 활엽수인 포플라 MWL (GS-type lignin: Mw 13,250)의 1/3 수준으로 측정되었다. DHP 합성 과정에서 형성된 ${\beta}$-O-4 결합 빈도는 GS-DHP가 502 ${\mu}mol$/g으로 가장 높았지만 포플라 MWL (1107 ${\mu}mol$/g)의 1/2 수준에 머물렀고, G-DHP의 경우도 약 286 ${\mu}mol$/g으로 H-DHP (127 ${\mu}mol$/g)보다 약 2.5배 이상 많은 ${\beta}$-O-4 결합을 형성하였지만 소나무 MWL (651 ${\mu}mol$/g)과 비교하여 절반 정도로 측정되었다.

In this study diverse dehydrogenative polymers (DHPs) were synthesized with three precursors of native lignin [p-coumaryl alcohol (PCA), coniferyl alcohol (CA), sinapyl alcohol (SA)] in the presence of horseradish peroxidase (HRP, EC. 1.11.1.7)/$H_2O_2$. To compare the structural features between DHPs and native lignin, the DHPs as well as pine/poplar milled wood lignins were simultaneously subjected to gel permeation chromatography (GPC) to determine average molecular weights and derivatization followed by reductive cleavage (DFRC) to investigate the frequency of ${\beta}$-O-4 linkage. The highest yield of DHP was measured to 71% when CA was solely injected (G-DHP) and the yield of H-DHP was 42%. However, single injection of SA could not form any polymer in this system. The average molecular weights of DHPs were ranged between 3,000~4,700, which were only 1/2 fold compared with that of pine MWL (G-type lignin: Mw 7,340) and 1/3 scale compared with that of poplar MWL (GS-type lignin: Mw 13,250). DFRC analysis revealed that the formation of ${\beta}$-O-4 linkage during dehydrogenative polymerization was the highest in the GS-DHP with ca. 502 ${\mu}mol$/g, which was, however, remained to only 50% compared to that in poplar MWL (1107 ${\mu}mol$/g). The ${\beta}$-O-4 linkage was estimated to ca. 286 ${\mu}mol$/g In the G-DHP, which was twice as much as that of H-DHP(127 ${\mu}mol$/g). Similar to GS-DHP, only half amount of ${\beta}$-O-4 linkage, compared to pine MWL, was formed during in vitro polymerization of CA by horseradish peroxidase/$H_2O_2$.

키워드

참고문헌

  1. Barakat, A., H. Winter, C. Rondeau-Mouro, B. Saake, B. Charbert, and B. Cathala. 2007. Studies of xylan interaction and cross-linking to synthetic lignins formed by bulk and end-wise polymerization : a model study of lignin carbohydrate complex formation. Planta 226: 267-281. https://doi.org/10.1007/s00425-007-0479-1
  2. Boerjan, Q., J. Ralph, and M. Baucher. 2003. Lignin biosynthesis. Annu. Rev. Plant Biol. 54: 519-546. https://doi.org/10.1146/annurev.arplant.54.031902.134938
  3. Faix, O. 1986. Investigation of lignin polymer models (DHP) by FTIR spectroscopy. Holzforschung 40: 273-280. https://doi.org/10.1515/hfsg.1986.40.5.273
  4. Faix, O. and O. Beinhoff. 1988. FTIR spectra of milled wood lignins and lignin polymer models (DHP) with enhanced resolution obtained by deconvolution. Journal of wood chemistry and technology 8: 505-522. https://doi.org/10.1080/02773818808070698
  5. Freudenberg, K. 1956. Beitraege zur Erforschung des Lignins. Angewandte Chemie. 68: 508-512. https://doi.org/10.1002/ange.19560681603
  6. Higuchi, T. 1985. Biosynthesis of lignin. In: Biosynthesis and biodegradation of wood components. Eds: T. Higuchi, Academic press, Inc. pp 141-160.
  7. Lu, F. and J. Ralph. 1997. Derivatization followed by reductive cleavage (DFRC method), a new method for lignin analysis: Protocol for analysis of DFRC monomers. J. Agric. Food. Chem. 45: 2590-2592. https://doi.org/10.1021/jf970258h
  8. Quideau, S. and J. Ralph. 1992. Facile Large-Scale Synthesis of Coniferyl, Sinapyl, and p-Coumaryl Alcohol, J. Agric. Food Chem. 40: 1108-1110. https://doi.org/10.1021/jf00019a003
  9. Syrjaenen, K. and G. Brunow. 2000. Regioselectivity in lignin biosynthesis. The influence of dimerization and cross-coupling. J. Chem. Soc., Perkin Trans. 1: 183-187.
  10. Takahama, U., T. Oniki, and H. Shimokawa. 1996. A possible mechanism for the oxidation of sinapyl alcohol by peroxidase-dependent reactions in theapoplast: Enhancement of the oxidation by hydroxycinnamic acids and components of the apoplast. Plant cell physiology 37: 499-504. https://doi.org/10.1093/oxfordjournals.pcp.a028972
  11. Watanabe, T. 1995. Important properties of lignin-carbohydrate complexes (LCCs) in environmentally safe paper making. Trends in glycoscience and glycotechnology 7: 57-68. https://doi.org/10.4052/tigg.7.57
  12. Lu, F. and J. Ralph. 1998. The DFRC Method for Lignin Analysis. 2. Monomers from Isolated Lignins. J. Agric. Food. Chem. 46: 547-552. https://doi.org/10.1021/jf970676m

피인용 문헌

  1. Parameters affecting in vitro monolignol couplings during dehydrogenative polymerization in the presence of peroxidase and H2O2 vol.26, 2015, https://doi.org/10.1016/j.jiec.2014.12.014