DOI QR코드

DOI QR Code

흡착법에 의한 Fomitopsis pinicola 유래 cellulase의 고정화와 그에 따른 효소특성 변화

Immobilization of Cellulases from Fomitopsis pinicola and Their Changes of Enzymatic Characteristics

  • 신금 (국민대학교 삼림과학대학 임산생명공학과) ;
  • 김태종 (국민대학교 삼림과학대학 임산생명공학과) ;
  • 김영균 (국민대학교 삼림과학대학 임산생명공학과) ;
  • 김영숙 (국민대학교 삼림과학대학 임산생명공학과)
  • Shin, Keum (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University) ;
  • Kim, Tae-Jong (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University) ;
  • Kim, Young-Kyoon (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University) ;
  • Kim, Yeong-Suk (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University)
  • 투고 : 2010.03.22
  • 심사 : 2010.04.14
  • 발행 : 2010.05.25

초록

Formiptosis pinicola KMJ812에 의해 생산된 조효소액은 섬유소 분해효소 복합체로서 매우 활성이 높으며 특히 ${\beta}$-glucosidase의 활성이 높아 포도당 전환수율이 높다. 본 연구에서는 F. pinicola KMJ812 생산 cellulase를 고정화에 따른 효소특성의 변화와 고정화 효소의 재사용에 따른 효소의 불활성 정도를 관찰하였다. 담체는 고정화 수율이 cellulase활성 61.7%와 ${\beta}$-glucosidase활성 64.4%로 우수한 Duolite A568로 선정하였다. 고정화 효소의 최적반응온도는 cellulase와 ${\beta}$-glucosidase 활성의 경우 모두$55^{\circ}C$로서 수용성효소보다 높았으며, 최적 pH는 cellulase활성은 4.0이었고, ${\beta}$-glucosidase활성은 4.5로 cellulase활성의 경우에서만 수용성효소와 비교하여 약간 염기성으로 변화하였다. 본 고정화 효소는 $50^{\circ}C$에서 72시간 후에 98%의 활성을 유지하고 있었으며, $50^{\circ}C$에서 8회 사용 후에 50%정도의 잔존활성을 나타내었다.

Cellulase from Formiptosis pinicola KMJ812 is an efficient cellulose degradation enzyme complex, especially with a high ${\beta}$-glucosidase activity. In this study, the change in enzymatic characteristics by immobilization and the reduction of immobilized enzyme activity by repeated usages were evaluated using cellulases from F. pinicola KMJ812. Among tested four resins, Duolite A568 resin had the best enzyme activity yield with 61.7% cellulase activity and 64.4% ${\beta}$- glucosidase activity during the cellulase immobilization. The best reaction temperature was $55^{\circ}C$ for both cellulase and ${\beta}$-glucosidase activities which were higher than the unimmobilized soluble cellulases. The best reaction pH was 4.0 for cellulase activity which was a little more basic than a soluble form and 4.5 for ${\beta}$-glucosidase activity. The immobilized cellulase activity was remained 98% of the beginning activity after 72 h incubation at $50^{\circ}C$ and 50% of the beginning activity after eight times usage at $50^{\circ}C$.

키워드

참고문헌

  1. Abdel-Naby, M. A. 1993. Immobilization of Aspergillus niger NRC 107 xylanase and ${\beta}-xylosidase$, and properties of the immobilized enzymes Applied Biochemistry and Biotechnology 38: 69-81. https://doi.org/10.1007/BF02916413
  2. Ahn, J. W., K. W. Park, and J. H. Seo. 1997. Immobilization of transglucosidase from Aspergillus niger. Korean Journal of Food Science and Technology 29: 320-325.
  3. Akgol, S., Y. Yalcinkaya, G. Bayramoglu, A. Denizil, and M. Y. Arica. 2002. Reversible immobilization of urease onto procion brown MX-5BR-Ni (II) attached polyamide hollow-fiber membrane. Process Biochemistry 38: 675-683. https://doi.org/10.1016/S0032-9592(02)00198-X
  4. Andreaus, J., R. Campos, G. Gubitz, and A. Cavaco-Paulo. 2000. Influence of cellulases on indigo backstaining. Textile Research Journal 70: 628-632. https://doi.org/10.1177/004051750007000711
  5. Arica, M. Y., V. Hasirci, and N. G. Alaeddinoglu. 1995. Covalent immobilization of ${\alpha}-amylase$ onto pHEMA microspheres. Biomaterials 16: 761-768. https://doi.org/10.1016/0142-9612(95)99638-3
  6. Aristidou, A. and M. Penttila. 2000. Metbolic engineering applications to renewable resource utilization. Current Opinion in Biotechnology 11: 187-198. https://doi.org/10.1016/S0958-1669(00)00085-9
  7. Bayer, E. A., H. Chanzy, R. Lamed, and Y. Shoham. 1998. Cellulose, cellulases and cellulosomes. Current Opinion in Structural Biology 8: 548-557. https://doi.org/10.1016/S0959-440X(98)80143-7
  8. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  9. Busto, M. D., N. Ortega, and M. Perezmateos. 1998. Characterization of microbial $endo-{\beta}-glucanase$ immobilized in alginate beads. Acta Biotechnologica 18: 189-200. https://doi.org/10.1002/abio.370180303
  10. Chengzhou, L. I., S. Kana, M. Tomohiro, Y. Makoto, F. Kimitoshi, and N. Katsumi. 2004. Enzymatic hydrolysis hydrolysis of waste paper in an external loop airlift bubble column with continuous ultasonic irradiation. Journal of Chemical Engineering of Japan 37: 1041-1049. https://doi.org/10.1252/jcej.37.1041
  11. Chim-Anage, P., Y. Kashiwagi, Y. Magae, T. Ohta, and T. Sasaki. 1986. Properties of cellulase immobilized on agarose gel with spacer. Biotechnology and Bioengineering 28: 1876-1878. https://doi.org/10.1002/bit.260281215
  12. Choi, D. Y., Y. M. Lee, Y. K. Kim, J. J. Yoon, and Y. S. Kim. 2007. Enzyme activities and cellulose degradation of domestic softwoods in shaking culture of Fomitopsis palustris. Mokchae Konghak 35(6): 91-99.
  13. Claassen, P. A. M., J. B. van Lier, A. M. Lopez Contreras, E. W. J. van Niel, L. Sijtsma1, A. J. M. Stams, S. S. de Vries, and R. A. Weusthuisvan. 1999. Utilization of biomass for the supply of energy carriers. Applied Microbiology and Biotechnology 52: 741-755. https://doi.org/10.1007/s002530051586
  14. de Fuentes, I. E., C. A. Viseras, D. Ubiali, M. Terreni, and A. R. Alcantara. 2001. Different phyllosilicates as supports for lipase immobilization. Journal of Molecular Catalysis B: Enzymatic 11: 657-663. https://doi.org/10.1016/S1381-1177(00)00069-2
  15. Demirel, D., A. R. Ozdural, and M. Mutlu. 2004. Preparation and characterization of magnetic duolite-polystyrene composite particles for enzyme immobilization. Journal of Food Engineering 62: 203-208. https://doi.org/10.1016/S0260-8774(03)00225-5
  16. Dincer, A. and A. Telefoncu. 2007. Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads Journal of Molecular Catalysis B: Enzymatic 45:10-14. https://doi.org/10.1016/j.molcatb.2006.10.005
  17. Duff, S. J. B. and W. D. Murray. 1996. Bioconversition of forest products industry waste cellulosics to fuel ethanol: a review. Bioresource Technology 55: 1-33. https://doi.org/10.1016/0960-8524(95)00122-0
  18. Fadiloglu, S. and Z. Soylemez. 1998. Olive oil hydrolysis by celite immobilized Candida rugosa lipase. Journal of Agricultural and Food Chemistry 46: 3411-3414. https://doi.org/10.1021/jf9709865
  19. Gargouri, M., I. Smaali, T. Maugard, M. D. Legoy, and N. Marzouki. 2004. Fungus ${\beta}-glycosidases$: immobilization and use in $alkyl-{\beta}-glycoside$ synthesis. Journal of Molecular Catalysis B 29: 89-94. https://doi.org/10.1016/j.molcatb.2003.11.020
  20. Joo, A. R., M. Jeya, K. M. Lee, W. I. Sim, J. S. Kim, I. W. Kim, Y. S. Kim, D. K. Oh, P. Gunasekaran, and J. K. Lee. 2009. Purification and characterization of a ${beta}-1,4-glucosidase$ from a newly isolated strain of Fomitopsis pinicola. Applied Microbiology and Biotechnology 83: 285-294. https://doi.org/10.1007/s00253-009-1861-7
  21. Kajiuchi, T. and J. W. Park. 1992. Characteristics of cellulase modified with a copolymer of polyethylene glycol derivative and maleic acid anhydride Journal of Chemical Engineering of Japan 25: 202-206. https://doi.org/10.1252/jcej.25.202
  22. Karube, I., S. Tanaka, T. Shirai, and S. Suzuki. 1977. Hydrolysis of cellulose in a cellulase-bead fluidized bed reactor. Biotechnology and Bioengineering 19: 1183-1191. https://doi.org/10.1002/bit.260190808
  23. Kim, H. J., S. G. Wi, and H. J. Bae. 2007. Biobleaching of softwood kraft pulp using recombinant xylanase and cellulase. mokchae konghak 35(6): 166-174.
  24. Lee, J. W., H. Y. Kim, B. W. Koo, D. H. Choi, M. Kwon, and I. G. Choi. 2008. Enzymatic saccharification of biologically pretreated Pinus densiflora using enzymes from brown rot fungi. Journal of Bioscience and Bioengneering 106: 162-167. https://doi.org/10.1263/jbb.106.162
  25. Li, C., M. Yoshimoto, K. Fukunaga, and K. Nakao. 2007. Characterization and immobilization of liposome-bound cellulase for hydrolysis of insoluble cellulose. Bioresource Technology 98: 1366-1372. https://doi.org/10.1016/j.biortech.2006.05.028
  26. Li, J., J. Wang, V. G. Gavalas, D. A. Atwood, and L. G. Bachas. 2003. Alumina-pepsin hybrid nanoparticles with orientation specific enzyme coupling. Nano Letters 3: 55-58. https://doi.org/10.1021/nl025778s
  27. Lim, B. C., H. J. Kim, and D. K. Oh. 2009. A stable immobilized D-psicose-3-epimerase for the production of D-psicose in the presence of borate. Process Biochemistry 44: 822-828. https://doi.org/10.1016/j.procbio.2009.03.017
  28. Lin, Y. and S. Tanaka. 2006. Ethanol fermentation from biomass resources: current state and prospects Applied Microbiology and Biotechnology 69: 627-642. https://doi.org/10.1007/s00253-005-0229-x
  29. Macario, A., A. Katovic, G. Giordano, L. Forni, F. Caloni, A. Filippini, and L. Setti. 2005. Immobilization of lipase on microporous and mesoporous materials: studies of the support surfaces. Studies in Surface Science and Catalysis 155: 381-394. https://doi.org/10.1016/S0167-2991(05)80166-1
  30. Martino, A., P. G. Pifferi, and G. Spagna. 1996. Immobilizaton of <.TEX>${\beta}-glucosidase$ from a commercial preparation. Part 2. Optimization of the immobilization process on chitosan. Process Biochemistry 31: 287-293. https://doi.org/10.1016/0032-9592(95)00066-6
  31. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Biochemistry 31: 426-428.
  32. Morin, L. G. and J. Prox. 1973. Single glucose oxidase-peroxidase reagent for two-minute determination of serum glucose. Clinical Chemistry 19: 959-962.
  33. Ozdural, A. R., D. Tanyolac, Z. Demircan, I. H. Boyaci, M. Mutlu, and C. Webb. 2001. A new method for determination of apparent kinetics parameters in recirculating packed-bed immobilized enzyme reactors Chemical Engineering Science 56: 3483-3490. https://doi.org/10.1016/S0009-2509(01)00049-5
  34. Phadtare, S., S. Vyas, D. V. Palaskar, A. Lachke, P. G. Shukla, S. Sivaram, and M. Sastry. 2004. Enhancing the reusability of endoglucanase - gold nanoparticle bioconjugates by tethering to polyurethane microspheres. Biotechnology Progress 20: 1840-1846. https://doi.org/10.1021/bp0499000
  35. Saleem, M., M. H. Rashid, A. Jabbar, R. Perveen, A. M. Khalid, and M. I. Rajoka. 2005. Kinetic and thermodynamic properties of an immobilized endoglucanase from Arachniotus citrinus. Process Biochemistry 40: 849∼855. https://doi.org/10.1016/j.procbio.2004.02.026
  36. Shaw, J. F., R. C. Chang, F. F. Wang, and Y. J. Wang. 1991. Lipopolytic activity of a lipase immobilized on six selected supporting materials. Biotechnology and Bioengineering 35: 132-137.
  37. Takahashi, H., B. Li, T. Saaki, C. Miyazaki, T. Kajino, and S. Inagaki. 2000. Catalytic activity in organic solvents and stability of immobilized enzymes depends on the pore size and surface characteristic of mesoporous silica. Chemistry of Materials 12: 3301-3305. https://doi.org/10.1021/cm000487a
  38. Tengborg, C., M. Galbe, and G. Zacchi. 2001. Reduced inihbition of enzymatic hydrolysis of stream-pretreated softwood. Enzyme and Microbial Technology 28: 835-844. https://doi.org/10.1016/S0141-0229(01)00342-8
  39. Tenkanen, M., M. L. Niku-Paavola, M. Linder, and L. Viikari. 2003. Cellulases in food processing. In Handbook of Food Enzymology pp. 771-789.
  40. Tu, M., X. Zhang, A. Kurabi, N. Gilkes, W. Mabee, and J. Saddler. 2006. Immobilization of ${\beta}-glucosidase$ on Eupergit C for lignocellulose hydrolysis. Biotechnology Letters 28: 151-156. https://doi.org/10.1007/s10529-005-5328-3
  41. Viikari, L., J. Pere, A. Suurnakki, T. Qksanen, and J. Buchert. 1998. Use of cellulases in pulp and paper applications. Special Publication-Royal Society of Chemistry 219: 245-254.
  42. Woodward, J., S. K. Hillman, and B. K. Vaughen. 1984. An immobilization method for the recovery of cellulase used in cellulose conversion to ethanol. Energy Biomass Wastes 8: 1091-1111.
  43. Yoon, J. J., C. J. Cha, Y. S. Kim, and W. Kim. 2008. Degradation of cellulose by the major endoglucanase produced from the brown-rot fungus Fomitopsis pinicola. Biotechnology Letters 30: 1373-1378. https://doi.org/10.1007/s10529-008-9715-4
  44. Zaldivar, J., J. Nielsen, and L. Olsson. 2001. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration Applied Microbiology and Biotechnology 56: 17-34. https://doi.org/10.1007/s002530100624
  45. Zhang, Y., J. Xu, Z. Yuan, H. Xu, and Q. Yu. 2010. Artificial neutral network-genetic algorithm based optimization for the immobilization of cellulase on the smart polymer Eudragit L-100. Bioresource Technology 101: 3153-3158. https://doi.org/10.1016/j.biortech.2009.12.080