DOI QR코드

DOI QR Code

Expression Site of Protoporphyrinogen Oxidase Influences on Herbicide Resistance in Transgenic Rice

형질전환 벼에서 Protoporphyrinogen Oxidase의 발현 위치가 제초제 저항성에 미치는 영향

  • Jung, Sun-Yo (School of Life Sciences and Biotechnology, Kyungpook National University)
  • 정선요 (경북대학교 생명공학부)
  • Received : 2010.08.23
  • Accepted : 2010.09.24
  • Published : 2010.09.30

Abstract

The effect of Protox expression site on herbicidal resistance was investigated in wild-type and transgenic rice plants imposed by peroxidizing herbicide oxyfluorfen. The transgenic rice systems involved the plastidal expression of Arabidopsis protoporphyrinogen oxidase (Protox; AP line) and the dual expression of Myxococcus xanthus Protox in chloroplasts and mitochondria (TTS line). The oxyfluorfen-treated TTS4 line showed the lower levels of cellular leakage and malonyldialdehyde and the sustained capacity of 5-aminolevulinic acid synthesis, compared to the oxyfluorfen-treated AP and wild-type lines. During oxyfluorfen action, the TTS4 line had greater herbicide resistance than the AP1 line, indicating that the dual expression of M. xanthus Protox in chloroplasts and mitochondria prevented the accumulation of photodynamic protoporphyrin IX more effectively than the expression of Arabidopsis Protox only in chloroplasts. These results suggest that the ectopic expression of Protox in mitochondria greatly contributes to the herbicidal resistance in rice plants.

과산화계 제초제 oxyfluorfen이 처리된 비형질전환 벼와 형질전환 벼에서 Protox 발현 위치가 제초제 저항성에 미치는 영향을 비교하였다. Arabidopsis protoporphyrinogen oxidase(Protox; AP 계통)를 색소체에만 발현하는 형질전환 벼와 Myxococcus xanthus Protox 유전자를 색소체와 미토콘드리아에 모두 발현하는 형질전환 벼(TTS 계통)가 형질전환 시스템으로 사용되었다. Oxyfluorfen이 처리된 TTS4 계통은 AP 계통이나 비형질전환 벼에 비해 낮은 수준의 세포질 누출 및 malonyldialdehyde를 보여주었고, 높은 5-aminolevulinic acid 합성 능력을 유지하였다. Oxyfluorfen 작용 동안, TTS4 계통은 AP1 계통보다 높은 제초제 저항성을 보여주었는데, 이는 색소체만에서의 Arabidopsis Protox의 발현에 비해 색소체와 미토콘드리아에서의 M. xanthus Protox의 쌍발현이 광역학적인 protoporphyrin IX의 축적을 더 효율적으로 억제하였기 때문일 것이다. 이 결과들은 미토콘드리아 내 Protox의 발현이 Protox 저해형 제초제에 대한 식물의 저항성에 크게 기여함을 의미한다.

Keywords

References

  1. Beale, S. I. 1978. $\delta$-Aminolevulinic acid in plants : its biosynthesis, regulation, and role in plastid development. Annu. Rev. Plant Physiol. 29: 95-120. https://doi.org/10.1146/annurev.pp.29.060178.000523
  2. Buege, T. A., and S. D. Aust. 1978. Microsomal lipid peroxidation. Method. Enzymol. 52:302-310. https://doi.org/10.1016/S0076-6879(78)52032-6
  3. Dolphin, D. 1994. Photomedicine and photody-namic therapy. Can. J. Chem. 72:1005-1013. https://doi.org/10.1139/v94-129
  4. Grimm, B. 1998. Novel insights in the control of tetrapyrrole metabolism of higher plants. Curr. Opin. Plant Biol. 1:245-250. https://doi.org/10.1016/S1369-5266(98)80112-X
  5. Ha, S. B., S. B. Lee, Y. Lee, K. Yang, N. Lee, S. M. Jang, J. S Chung, S. Jung, Y. S. Kim, S. G. Wi and K. Back. 2004. The plastidic Arabidopsis protoporphyrinogen IX oxidase gene, with or without the transit sequence, confers resistance to the diphenyl ether herbicide in rice. Plant Cell Environ. 27:79-88. https://doi.org/10.1046/j.0016-8025.2003.01127.x
  6. Jacobs, J. M., and N. J. Jacobs. 1987. Oxidation of protoporphyrinogen to protoporphyrin, a step in chlorophyll and haem biosynthesis. Purification and partial characterization of the enzyme from barley organelles. Biochem. J. 244:219-224.
  7. Jacobs, J. M., and N. J. Jacobs. 1993. Porphyrinogen accumulation and export by isolated barley (Hordeum vulgare L.) plastids : effect of diphenyl ether herbicides. Plant Physiol. 101:1181-1187.
  8. Jacobs, J. M., N. J. Jacobs., T. D. Sherman and S. O. Duke. 1991. Effects of diphenyl ether herbicides on oxidation of protoporphyrinogen to protoporphyrin in organellar and plasma membrane enriched fractions of barley. Plant Physiol. 97:197-203. https://doi.org/10.1104/pp.97.1.197
  9. Jung, S., and K. Back. 2005. Herbicidal and antioxidant responses of traasgenic rice overexpressing Myxococcus xanthus protoporphyrinogen oxidase. Plant Physiol. Biochem. 43:423-430. https://doi.org/10.1016/j.plaphy.2005.03.008
  10. Jung, S., Y. Lee and K. Back. 2006. A tobacco plastidal transit sequence cannot override the dual targeting capacity of Myxococcus xanthus protoporphyrinogen oxidase in transgenic rice. Pestic. Biochem. Physiol. 86:49-56. https://doi.org/10.1016/j.pestbp.2005.11.010
  11. Jung, S., H. J. Lee, Y. Lee, K. Kang, Y. S. Kim, B. Grimm and K. Back. 2008. Toxic tetrapyrrole accumulation in proloporphyrinogen IX oxidase-overexpressing transgenic rice plants. Plant Mol. Biol. 67:535-546. https://doi.org/10.1007/s11103-008-9338-0
  12. Kenyon, W. H., S. O. Duke and K. C. Vaughn. 1985. Sequence of effects of acifluorfen on physiological and ultrastructural parameters in cucmber cotyledon discs. Pestic. Biochem. Physiol. 24: 240-250. https://doi.org/10.1016/0048-3575(85)90134-8
  13. Knorzer. O. C, and P. Boger. 1999. Antagonizing peroxidizing herbicides, pp. 303-328. In P. Boger and K. Wakabayashi, eds. Peroxidising Herbicides. Springer-Verlag, Berlin Heidelberg New York.
  14. Kouji, H., T. Masuda and S. Matsunaka. 1988. Action mechanism of diphenyl ether herbicides : light-dependent $O_2$ consumption in diphenylether-treated tobacco cell homogenate. J. Pestic. Sci. 13:495-499. https://doi.org/10.1584/jpestics.13.495
  15. Lee, H. J., and S. O. Duke. 1993. Protoporphyrinogen IX-oxidizing activities involved in the mode of action of peroxidizing herbicides. Agric. Food Chem. 42:2610-2618.
  16. Lee, H. J., M. V. Duke, J. H. Birk, M. Yamamoto and S. O. Duke. 1995. Biochemical and physiological effects of benzheterocycles and related compounds. J. Agric. Food Chem. 43:2722-2727. https://doi.org/10.1021/jf00058a033
  17. Lee, H. J., Y. I. Kuk and S. Jung. 2003. Alleviation of membrane-associated herbicidal activity induced by acifluorfen-methyl with reductants. Kor. J. Weed Sci. 23:351-358.
  18. Lermontova, I., and B. Grimm. 2000. Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen. Plant Physiol. 122:75-83. https://doi.org/10.1104/pp.122.1.75
  19. Lydon, J., and S. O. Duke. 1988. Porphyrin synthesis is required for photobleaching activity of the p-nitrosubstituted diphenyl ether herbicides. Pestic. Biochem. Physiol. 31:74-83. https://doi.org/10.1016/0048-3575(88)90031-4
  20. Matringe, M., J. M. Camadro, M. A. Block, J. Joyard, R. Scalla, P. Labbe and R. Douce. 1992. Localization within the chloroplasts of protoporphyrinogen oxidase the target enzyme for diphenylether-like herbicides. J. Biol. Chem. 267:4646-4651.
  21. Mock, H. P., W. Heller, A. Molina, B. Neubohn, H. Sandermann and B. Grimm. 1999. Expression of uroporphyrinogen decarboxylase or coproporphyrinogen oxidase antisense RNA in tobacco induces pathogen defence responses conferring increased resistance to tobacco mosaic virus. J. Biol. Chem. 274:4231-4238. https://doi.org/10.1074/jbc.274.7.4231
  22. Molina, A., A. Volrath, D. Guyer, K. Maleck, J. Ryals and E. Ward. 1999. Inhibition of protoporphyrinogen oxidase expression in Arabidopsis causes a lesion-mimic phenotype that induces systemic acquired resistance. Plant J. 17:667-678. https://doi.org/10.1046/j.1365-313X.1999.00420.x
  23. Papenbrock, J., H. P. Mock, E. Kruse and B. Grimm. 1999. Expression studies in tetrapyrrole biosynthesis : inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic pho-toperiods. Planta 208:264-273. https://doi.org/10.1007/s004250050558
  24. Reinbothe, S., C. Reinbothe, K. Apel and N. Lebedev. 1996. Evolution of chlorophyll biosynthesis-the challenge to survive photooxidation. Cell 86: 703-705. https://doi.org/10.1016/S0092-8674(00)80144-0
  25. Smith, A. G., O. Marsh and G. H. Elder. 1993. Investigation of the subcellular location of the tetrapyrrole-biosynthesis enzyme coproporphyrinogen oxidase in higher plants. Biochem. J. 292:503-508.
  26. von Wettstein, D., S. Gough and C. G. Kannangara. 1995. Chlorophyll biosynthesis. Plant Cell 7: 1039-1057. https://doi.org/10.1105/tpc.7.7.1039
  27. Warabi, E., K. Usui, Y. Tanaka and H. Matsumoto. 2001. Resistance of a soybean cell line to oxyfluorfen by overproduction of mitochondrial protoporphyrinogen oxidase. Pestic. Manag. Sci. 57:743-748. https://doi.org/10.1002/ps.357
  28. Yao, N., and J. T. Greenberg. 2006. Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death. Plant Cell 18:397-411. https://doi.org/10.1105/tpc.105.036251