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Abstract. Let P be a prime ideal of a commutative unital ring R; X an indeterminate;

D := R/P ; L the quotient field of D; F an algebraic closure of L; α ∈ L[X] a monic

irreducible polynomial; ξ any root of α in F ; and Q = 〈P, α〉, the upper to P with respect

to α. Then R[X]/Q is R-algebra isomorphic to D[ξ]; and is R-isomorphic to an overring

of D if and only if deg(α) = 1.

1. Introduction

All rings and algebras considered in this note are commutative with 1 6= 0; all
subrings/subalgebras and algebra homomorphisms are unital; and X denotes an
indeterminate over the ambient coefficient ring(s). Our main concern here is the
notion of an upper, which was implicit in a brief passage [5, page 25] introducing
the basic facts about the Krull dimension of a polynomial ring R[X]; made explicit,
with suggestive and helpful notation, in case R is a (commutative integral) domain,
in [6, pages 706–708]; and generalized to the case of an arbitrary coefficient ring R
in [3, pages 291–292]. The definition of an “upper to P” depends on the following
data. Let P be a prime ideal of a commutative unital ring R; X an indeterminate;
D := R/P ; L the quotient field of D; and α ∈ L[X] a monic irreducible polynomial.
Then the upper to P with respect to α is defined to be 〈P, α〉 := {h ∈ R[X] | the
canonical image of h in D[X] is divisible by α in L[X]}. As the passages cited
above show, the “upper” concept is important because, if P is a prime ideal of a
ring R, the prime ideals Q of the polynomial ring R[X] such that Q ∩ R = P are
of two kinds: either Q = P ∗ := PR[X] or Q = 〈P, α〉 for some monic irreducible
polynomial α ∈ L[X]. Since it is easy to see that R[X]/P ∗ is R-algebra isomorphic
to (R/P )[X], the question arises as to the nature of the factor domains of the form
R[X]/〈P, α〉. We answer this question in Theorem 2.2 (a) below. The answer is
elegant and its proof is elementary. Using the above notation, we show in Theorem
2.2 that R[X]/〈P, α〉 is R-algebra isomorphic to D[ξ], where ξ denotes any given
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root of α in an algebraic closure of L. In this way, we see that factor domains
with respect to uppers give another way of describing a class of domains that has
been the subject of considerable attention in a number of classical contexts (cf. [7,
Theorem], [8, Proposition 3.11], [1, Theorem]).

2. Results

Our first result explains how our basic question reduces to working with coeffi-
cient rings that are domains and uppers to 0.

Lemma 2.1. Let P be a prime ideal of a ring R; D := R/P ; L the quotient field of
D; and α ∈ L[X] a monic irreducible polynomial. Then R[X]/〈P, α〉 is R-algebra
isomorphic to D[X]/〈0, α〉.
Proof. The canonical projection R → R/P extends to a surjective R-algebra homo-
morphism h : R[X] → D[X] that send X to X; thus, h(

∑n
i=0 riX

i) =
∑n

i=0 (ri +
P )Xi for any polynomial

∑n
i=0 riX

i ∈ R[X]. Composing h with a canonical pro-
jection, we obtain a surjective R-algebra homomorphism g : R[X] → D[X]/〈0, α〉,
satisfying g(

∑n
i=0 riX

i) =
∑n

i=0 (ri + P )Xi + 〈0, α〉. Clearly, ker(g) = 〈P, α〉, and
so the assertion follows from the First Isomorphism Theorem for R-algebras. 2

We next present our main result. Recall that if D is a domain with quotient
field L, then an overring of D is any D-subalgebra of L (that is, any subring of L
that contains D).

Theorem 2.2. Let P be a prime ideal of a ring R; D := R/P ; L the quotient field
of D; F an algebraic closure of L; and α ∈ L[X] a monic irreducible polynomial.
Then:

(a) R[X]/〈P, α〉 is R-algebra isomorphic to D[ξ] for each root ξ of α in F .
(b) R[X]/〈P, α〉 is R-algebra isomorphic to an overring of D if and only if

deg(α) = 1.

Proof. By Lemma 2.1, we can replace R with D and also replace P with 0. In other
words, we can assume, without loss of generality, that R is a domain and P = 0.

(a) As in the proof of Lemma 2.1, we obtain an explicit surjective R-algebra
homomorphism h : R[X] → D[X],

∑n
i=0 riX

i 7→
∑n

i=0 (ri + P )Xi. Note that
ker(h) = PR[X] =: P ∗ ⊆ 〈P, α〉. Moreover, h carries the set 〈P, α〉 onto the set
S := {g ∈ D[X] | α|g in L[X]}. (In fact, S is a prime ideal of D[X].) It then
follows from a standard homomorphism theorem that R[X]/〈P, α〉 and D[X]/S are
isomorphic as R-algebras. Therefore, it suffices to prove that D[X]/S ∼= D[ξ] as
R-algebras (where ξ denotes any given root of α in F ).

To simplify matters, let us use the above reduction, so that R is a domain and P
is the prime ideal 0 of R. Our task is to show that R[X]/S ∼= R[ξ] as R-algebras. But
since α is the minimum polynomial of ξ over L, it follows that S = R[X]∩αL[X] is
the kernel of the surjective R-algebra (evaluation) homomorphism e : R[X] → R[ξ]
that sends X to ξ. Hence, the required isomorphism follows by applying the First
Isomorphism Theorem for R-algebras to e.
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(b) Choose a root ξ of α in F . Recall that we have reduced to the case R = D
and P = 0. Thus, R[X]/〈P, α〉 is R-algebra isomorphic to an overring of D if and
only if there is an injective R-algebra homomorphism R[X]/〈0, α〉 → L; that is, by
(a), if and only if there is an injective R-algebra homomorphism g : R[ξ] → L.

Assume first that such g exists. We will show that deg(α) = 1. Taking a
common denominator for the coefficients of α, we can write α = β/r for some
β ∈ R[X] and some nonzero element r ∈ R. Consequently, β(ξ) = rα(ξ) = r ·0 = 0.
Also, since g is an R-algebra homomorphism, we see that β(g(ξ)) = g(β(ξ)). Thus,
η := g(ξ) ∈ L satisfies

α(η) = α(g(ξ)) =
1
r
β(g(ξ)) =

1
r
g(β(ξ)) =

1
r
g(0) =

1
r
· 0 = 0;

that is, η is a root of α in L. Since α is irreducible in L[X], it follows that deg(α) = 1.
Conversely, suppose that deg(α) = 1. Then α = X − δ for some δ ∈ L. Note

that δ is a root of α. Therefore, by (a), R[X]/〈P, α〉 is R-algebra isomorphic to
R[δ], which is an overring of R (that is, of D). 2

The following is a useful restatement of Theorem 2.2 (a).

Corollary 2.3. Let P be a prime ideal of a ring R; D := R/P ; L the quotient
field of D; and F an algebraic closure of L. Then, up to R-algebra isomorphism,
the rings of the form R[X]/Q, where Q ranges over the set of uppers to P , are the
same as the rings of the form D[ξ], where ξ ranges over (the set of elements of )
F .

Proof. In view of Theorem 2.2 (a), it remains only to show that if ξ ∈ F , then there
exists some α, a monic irreducible polynomial in L[X], such that D[ξ] is R-algebra
isomorphic to R[X]/〈P, α〉. Choose α ∈ L[X] to be the minimum polynomial of ξ
over L. Then an application of Theorem 2.2 (a) completes the proof. 2

It is known that if P is a prime ideal of a ring R and α, β are distinct monic
polynomials that are each irreducible over the quotient field of R/P , then 〈P, α〉
and 〈P, β〉 are unequal and, in fact, incomparable under inclusion (cf. [3, Lemma
2.1 (a)]). In view of Corollary 2.3, this raises the following question. If (using the
above notation) ξ and η are elements of an algebraic closure of the quotient field
of R/P such that D[ξ] and D[η] are isomorphic as R-algebras, must it be the case
that D[ξ] = D[η]? We will answer this question in Remark 2.4 (a) and a related
question in Remark 2.4 (b).

Remark 2.4. (a) We proceed to answer the above question, assuming for simplicity
that R is a domain and P = 0. Let R be a domain with quotient field L, let F
be an algebraic closure of L, and let ξ and η be elements of F such that R[ξ] and
R[η] are isomorphic as R-algebras. Then, if ξ and η are each elements of L, then
R[ξ] = R[η]. However, if at least one of ξ, η does not belong to F , then it need not
be the case that R[ξ] = R[η].

To prove the first assertion, assume that ξ and η are each elements of L. Then
R[ξ] and R[η] are R-algebra isomorphic overrings of R (that are inside the same
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quotient field of R). Under these conditions, it is known (see the first paragraph of
[4, Remark 2.8 (a)]) that these overrings must coincide.

Finally, we will give an example where R[ξ] and R[η] are distinct but R-algebra
isomorphic R-subalgebras of F . Take R := Z, P := 0, and view F ⊆ C. Choose
a, b ∈ Q (=L) with 2a 6∈ Z and b 6= 0. Let ξ := a + bi and η := a − bi (where, as
usual, i :=

√
−1 ∈ C). It is easy to check that ξ and η have the same minimum

polynomial over L, namely, α := X2 − 2aX + a2 + b2. Therefore, by Theorem
2.2 (a), R[ξ] and R[η] are each R-algebra isomorphic to R[X]/〈P, α〉 (and, hence,
R-algebra isomorphic to each other). However, R[ξ] 6= R[η], since the condition
2a 6∈ Z ensures that

η = a− bi = 2a + (−1)(a + bi) = 2a + (−1)ξ ∈ (Q + Qξ) \ (Z + Zξ) = L[ξ] \R[ξ].

(b) We next answer another question that is raised by Corollary 2.3 (and also
motivated by (a)). With P a prime ideal of a ring R and α, β monic irreducible
polynomials over the quotient field of R/P such that R[X]/〈P, α〉 ∼= R[X]/〈P, β〉
as R-algebras, can it be the case that α 6= β? In view of the above results, we can
rephrase this question as follows. If R is a domain with quotient field L and α, β
are distinct monic irreducible polynomials over L, can it be the case that R[ξ] and
R[η] are isomorphic R-algebras, where ξ and η are roots of α and β, respectively,
in a given algebraic closure of L?

The answer is in the affirmative. We illustrate this next in the most trivial case
possible, namely, where R is an algebraically closed field (so that, using the earlier
notation, R = D = L = F and, of course, P = 0). Under this assumption, choose
distinct elements λ, µ ∈ R; and put α := X − λ, β := X − µ ∈ R[X]. Take ξ and
η to be roots of α and β, respectively, in R; that is, ξ = λ and η = µ. Of course,
R[ξ] = R is R-algebra isomorphic to R = R[η], although α 6= β.

(c) We next pursue the idea from (b) of considering the degenerate case where
the coefficient ring R is a field. This brings to mind a classic result often referred
to as the theorem of Cauchy, Kronecker and Steinitz. This result gives the usual
construction of a field extension K of a given field k such that K contains a root
of a given irreducible polynomial f ∈ k[X]. Related analysis shows that if ξ, η are
each roots of f in K, then the fields k[ξ] and k[η] are isomorphic k-algebras (since
each is k-algebra isomorphic to k[X]/fk[X]). Note that Theorem 2.2 (a) implies a
generalization of this classical fact, in that the coefficient ring can be an arbitrary
domain. Indeed, Theorem 2.2 (a) shows that if D is a domain with quotient field L
and f ∈ L[X] is a monic irreducible polynomial with roots ξ, η, . . . in some algebraic
closure of L, then D[ξ] ∼= D[η] as D-algebras (since each is D-algebra isomorphic
to D[X]/〈0, f〉).

(d) Some special cases (or variants thereof) of Theorem 2.2 (a) have appeared
in the literature. For instance, [1, Lemma 1] states (when paraphrased using the
above notation) that if R is an integrally closed domain with quotient field L and
the element ξ is integral over R, then R[X]/αR[X] ∼= R[ξ] as R-algebras, where
α ∈ R[X] denotes the minimum polynomial of ξ over L. This is a special case of
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Theorem 2.2 (a) since the extra assumptions on R and ξ in [1, Lemma 1] ensure
that αR[X] = αL[X]∩R[X] = 〈0, α〉. Of course, the domains R that we considered
above need not be integrally closed; the algebraic elements ξ that we considered
above need not be integral; and so the monic irreducible polynomials α ∈ L[X]
that we considered need not have all their coefficients in R. One should note that
[1, Lemma 1] is slightly more general that suggested above, in that it permits the
integral element ξ to be taken from an arbitrary L-algebra (which is not necessarily
contained in an algebraic closure of L).

Finally, we note that [2, Lemma 4.4] can be viewed as a weak version of The-
orem 2.2 (a). Indeed, using the notation of Theorem 2.2 (a), we can paraphrase
[2, Lemma 4.4] to say that if R is a domain and 〈P, α〉 is an upper to some prime
ideal P of R, then the domain R[X]/〈P, α〉 is algebraic over D := R/P . However,
we believe that the stronger conclusions in Theorem 2.2 (a) and Corollary 2.3 have
not appeared earlier in the literature.
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