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Abstract. By strengthening dichotomy condition and weakening decay conditions, we

show that a four term 2n-th order differential operator with unbounded coefficients is non-

limit-point. Using stringent conditions we show that the deficiency index of this operator

is determined by the behaviour of the coefficients themselves. Similarly, we prove the

absence of singular continuous spectrum and that the absolutely continuous spectrum has

multiplicity two.

1. Introduction

This paper is concerned with the study of deficiency indices and spectral results
of a four term 2n-th order differential operator generated by a differential expression
τ of the form

τy = w−1

{
(−1)n(y(n))(n) − 1

2
i((py(k+1))k + (py(k))(k+1))

+ (−1)m(qy(m))(m) + p0y
}(1.1)

defined on L2
w([0,∞)). The coefficients as functions of x are assumed to be real-

valued, locally integrable, twice differentiable and are allowed to be unbounded. In
the special case where w ≈ p0, then q and p0 will be assumed to be asymptotically
constant, that is, q → cq and p0 → dpo

as x →∞ [2], where cq and dp0 are constants.
The symmetric nature of this differential expression has been studied by Everitt and
others in several papers, for example [11]. Just like in [3, 7, 15, 16], asymptotic in-
tegration theory will also be used here to study the deficiency indices and spectral
results. Asymptotic integration theory of linear Hamiltonian systems is based on
Levinson’s Theorem [10]. There are many authors who have used asymptotic inte-
gration theory to investigate deficiency indices and spectral results of higher order
differential operators [8, 10, 9]. This theory has also been extended to investigate
absolutely continuous spectrum of differential operators by extending Levinson’s
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Theorem in various directions to include spectral parameter and also by weakening
decay conditions [2, 7, 15]. The absolutely continuous spectrum is only stable under
relative trace class perturbations. Previously, it has been studied mainly via scat-
tering techniques. The singular continuous spectrum is much more elusive, because
it is even unstable under small finite rank perturbations. This makes asymptotic
integration unsuitable for the study of singular continuous spectrum and thus by
results of [15], it will be absent in our case.

Eastham [8, 9, 10] used asymptotic theory to derive deficiency indices of gen-
eral even order differential operators although he assumed the coefficients to be
once differentiable. Remling [15], extended this theory to study absolutely con-
tinuous spectrum of higher order operators although he could not deal effectively
with unbounded coefficients since differential operators with unbounded coefficients
may exhibit a non-limit-point-case. This problem was later resolved by introducing
separated boundary conditions. Our main results states that a four term 2n-th
order differential operator (1.1) with unbounded coefficients has non-limit-point be-
haviour, the deficiency index is the sum of deficiency indices within each eigenvalue
group where the eigenvalue groups are determined by the growth of the coefficients
themselves. The singular continuous spectrum is absent and the absolutely contin-
uous spectrum has multiplicity two. These results are achieved through application
of appropriate smoothness and decay conditions. Once the asymptotics of the eigen-
functions have been determined, the estimates for the M -matrix can be derived for
the operators on the interval [a,∞) with a sufficiently large. Results of Remling
[15] then allow one to extend these results to the interval [0,∞).

In order to associate τ to a minimal closed operator L and maximal operator
L∗, we make the following assumptions. The coefficients are real valued, locally
integrable and w > 0. The scalar product on the Hilbert space L2

w([0,∞)) will then
be defined with respect to weighted function w. Generalising the approach of Wei-
dmann [18] and Eastham [10], we assume the coefficients to admit a decomposition
of the form

(1.2) f = f1 + f2 + f3 + f4, f2 = o(f1), f = p, q, p0, w.

Here f1 and f2 are assumed to be twice, respectively once, differentiable. The
sum f1 + f2 = fs will be called the smooth part of f , f3 will be assumed to be
integrable while f4 is assumed to be conditionally integrable. Then define also
f̂4 = −

∫∞
0

f4(t)dt.
Since p0, q, p are real valued by assumption, τ on L2

w([0,∞)) is formally sym-
metric and thus has self-adjoint extensions H if the deficiency indices defL, of
its minimal operator are equal. Thus σ(H), σac(H), σess(H), σp(H) and σsc(H)
will denote spectrum, absolutely continuous spectrum, essential, point and singular
continuous spectrum of H respectively.

defT = (dimNT∗−i, dimNT∗+i) = (N−, N+), N = nullspace

will define deficiency indices. Note that different authors for example Eastham [10]
and Weidmann [18] define deficiency indices differently. Thus in this paper, we will
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stick to the definition given above. The symbols � and � will be used to denote
much larger than and much smaller than respectively, in the absolute value sense.
Similarly, the relation f ≈ g will imply that K−1 | f |≤| g |≤ K | f | with K a
constant.

The paper is divided into four sections namely; 1. Introduction, 2. System
Formulation, 3. Dichotomy Condition, 4. Spectral Results.

2. System Formulation

In order to write a general 2n-th order differential expression of the form

Ly = w−1{Σn
k=0(−1)k(pky(k))(k)(2.1)

− iΣn
j=1(−1)j((qjy

(j))(j−1) + (qjy
(j−1))(j))}

into its linear Hamiltonian system or first order system, one needs to introduce
quasiderivatives. For operators of the type τ (2.1), these have been defined by
Walker [17]. With n ≥ 2 in (2.1), and some obvious reindexing, k ↔ n− k, one has

y[k] = y(k) for 0 ≤ k ≤ n− 1, y[n] = pny(n) − iqny(n−1),

y[n+1] = −(y(n))′ + i(qn/pn)y[n] + (pn−1 − (q2
n/pn))y(n−1) − iqn−1y

(n−2),

(2.2) y[n+k] = −y[n+k−1]′ + pn−ky[n−k] + i(qn−k+1y
(n−k+1) − qn−ky(n−k−1))

for 2 ≤ k ≤ n− 1. Then for n ≥ 2,

τy = w−[−(y[2n−1])′ + iq1y
′ + p0y]

so that the domain of maximal differential operator L∗ generated by (2.1), D(L∗),
consists of all functions y for which y[k] with 0 ≤ k ≤ 2n−1 are absolutely continuous
and L∗y ∈ L2([0,∞), w) = L2

w. Precisely, this domain is given by

D(L∗) = {y ∈ L2((0,∞) : w) : y[0], y[1], · · · , y[2n−1] are absolutely continu-
ous in ((0,∞) : w), τy ∈ L2((0,∞) : w)}

and τy = L∗y for y ∈ D(L∗). Thus, the maximal operator L∗ is defined in the
largest possible domain in L2((0,∞) : w). L∗ is therefore densely defined and
closed. An operator defined by restricting the domain of the maximal operator only
to those functions y with compact support is known as pre-minimal operator. This
will be denoted by L1 and its domain is defined by

D(L1) = {y ∈ D(L∗) : y has compact support in (0,∞)}

and L1y = τy = L∗y for y ∈ D(L1). The closure of pre-minimal operator, L1, is
the minimal differential operator generated by (2.1) and will be denoted by L.

Thus the linear Hamiltonian system of (2.1) is given by

(2.3) J y′(x) = [zA(x) + B(x)]y(x),
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where A(x), B(x) and J are matrices of size 2n×2n and y is a function with values
in C2n and satisfies regularity conditions, that is, if y satisfies J y′−By = z0Ay for
some y and some z0 with ‖y‖A = 0 then y = 0, and J y′ −By = Af with ‖y‖A = 0
then ‖f‖A = 0. Furthermore,

J =
[

0n −In

In 0n

]
, A =

[
A1 0
0 0

]
,

where A1 ∈ Cs×s with an assumption that A(x), B(x) are locally integrable in
the underlying interval [a,∞) and that B(x) = B∗(x), A1(x) > 0 (in the positive
definite sense), almost everywhere. It is this form of J which made the reordering
of the last n components of (y[k])2n−1

k=0 necessary. The nonzero matrix elements of

A(x) are A11 = w while B =
(
−C A∗

A B

)
with the nonzero matrix elements of

A, B and C given by

Aj,j+1 = 1, An,n = i
qn

pn
, Bn,n = p−1

n ,

Cj,j = pj−1, Cj,j+1 = iqj = −Cj+1,j .

Here, p0 and pn−1 should be read as p0 − zw and pn−1 − q2
n

pn
respectively, where z

is the spectral parameter. Thus, the differential operator generated by τ is defined
on the Hilbert space HA = PsL2([a,∞)) consisting of the equivalence classes of
measurable Cs-valued functions f with∫ ∞

a

f∗(x)A(x)f(x)d(x) < ∞.

In the definition of the Hilbert space HA, Ps is used to denote the projection
on the first s components of a vector in C2n. The scalar product is then given by

〈f, g〉A =
∫ ∞

a

f∗(x)A(x)g(x)d(x).

On this space define the operator τ̃ formally by

τ̃ y = diag(w−1, 0, · · · , 0)[J y′ − By].

Then τ̃ is formally symmetric and one can define again the corresponding minimal
and maximal operators L̃ and L̃∗ [13, 14]. However, it is advantageous to write
(2.3) in its first order system. Assume that u = (y[0], · · · , y[n−1], y[2n−1], · · · , y[n])t,
then one has

(2.4) u′ =
(

A B
C −A∗

)
u = Cu.

These two systems, (2.3) and (2.4), are unitarily equivalent and thus their spectral
results are equal [13, 14]. If L is in limit point at infinity, that is, defL = (n, n), then



Spectral Analysis of Four Term Differential Operator 19

the self adjoint extensions Hα are defined by boundary conditions at 0 parametrised
by n× n matrices α1 and α2 with

(2.5) α1α
∗
1 + α2α

∗
2 = In, α1α

∗
2 = α2α

∗
1.

Then Hαu = L∗u for u ∈ D(Hα), where

D(Hα) = {u ∈ D(L∗) | (α1, α2)u(0) = 0}.

We thus define a differential operator a k-term operator if besides the leading term
and p0, only k − 2 other coefficients differ from zero. They will be referred to here
as almost k-term operator if all but the k-coefficients of (2.1) vanish at infinity.
Throughout this study, the deficiency indices and spectral analysis of the four term
differential operator generated by (1.1) will be done in the formal framework of
linear Hamiltonian systems or its equivalent, the first order system. On one hand,
one can use the theory of general M -fuction, as developed by Hinton and Schneider
[13, 14, 15], to obtain spectral results. In [14], Hinton and Shaw and in [13], Hinton
and Schneider have developed the spectral theory of differential operators which
can be put into Hamiltonian form.

One of the most important results in asymptotic integration theory which helps
in estimating the solutions of the first order system (2.4) is the Levinson’s Theorem.
It states that the solutions of a system

(2.6) u′(x) = {Λ(x) + R(x)}u(x), Λ(x) = diag(λi(x))

look like the solutions of the unperturbed system u′ = Λu, if R(x) is sufficiently
small and Λ(x) = diag(λi(x)) satisfy the dichotomy condition. In Levinson’s original
result, small means absolutely integrable. The dichotomy condition amounts to:
Reλi(x) and Re(λk(x)−λj(x)), k 6= j, have approximately constant sign modulo L1

for large x. Meanwhile, Levinson’s Theorem has been extended in several directions
by modifying the dichotomy condition as well as allowed perturbations. These
permissible perturbations will be called Levinson’s terms in order to simplify the
use of Levinson’s Theorem.

For more details, see the book of Eastham [10] or [6]. In spectral theory, the
matrix elements and λi(x) will generally depend also on the spectral parameter
z. Thus one writes λi = λi(x, z) for this. In this case, it will be important to
prove Levinson’s Theorem uniformly in z in order to control the z-dependence of
the solutions. The following version given in [5, 6] will suffice.

Theorem 2.1. Let Λ(x, z) = diag(λ1(x, z), · · · , λ2n(x, z)) and R(x, z) be 2n × 2n
matrices which for a fixed x, are analytic functions of z ∈ Ω (where Ω is an open
subset of C) and

(i) For every compact subspace K ⊂ Ω there exists a function f = fk ∈
L1

loc([a,∞)) with ‖Λ(x, z)‖ ≤ f(x), ∀z ∈ K, x ≥ a ,

(ii) Re{λi(x, z) − λj(x, z)} of [a,∞) × Ω for all pair of numbers i and j in
(1, · · · , 2n), i 6= j, have constant sign modulo L1 (Dichotomy condition),
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(iii) ‖R(x, z)‖ ≤ g(x) with g ∈ L1([a,∞)),

then the system
Y ′(x, z) = [Λ(x, z) + R(x, z)]Y (x, z)

has solutions of the form

Yk(x, z) = (ek + rk(x, z))exp(
∫ x

a

λk(t, z)dt)

with rk(x, z) analytic in (x, z) and ‖rk(x, z)‖ ≤ d
∫∞

c
g(t)dt for a constant d and

c ≥ a, ∀(x, z) ∈ [c,∞)×Ω and where the constant d only depends on the constants
from the dichotomy condition. In particular, by taking c large enough, one can get
arbitrarily small bounds on rk, that is, rk(x, z) → 0 as x →∞.

The proof follows closely that of Theorem 3.5 in [6]. This result thus shows
the form of eigenvalue solutions obtained when (2.4) is reduced into Levinson’s
form. Thus in order to reduce (2.4) into Levinson’s form, one needs a (I + Q)-

transformation [2, 10], standard Kummer-Liouville transformation [2] and a two
diagonalisations in that order since we had assumed that the coefficients are twice
differentiable.

The first (I + Q)-transformation performed on the system (2.4) helps to trans-
form the conditionally integrable terms into integrable terms. But even after diago-
nalisations, if the largest part of the off diagonal terms of R (2.6) are not integrable,
one may still apply (I+Q)-transformations to transform them into integrable terms.
Assume the matrix C and the coefficients admits a decomposition (1.2) and take

C1 + C2 =
[

A B
C A∗

]
and C3 + C4 =

[
0 0

C3 + C4 0

]
.

For this, one needs w3 = w4 = 0. This requirement is not necessary and all
the following computations could be carried out without this assumption. The
conditions, however, become rather technical. Now transform the system (2.4) by

(2.7) u(x) = F (x)v(x),

with F (x) = I + Q. Thus one has

v′ = [Cs + (I + Q)−1{−Q′ + CsQ−QCs + C4 + C4Q}(2.8)
+ (1 + Q)−1C3(I + Q)]v.

If in equation (2.8) Q′ = C4, Q(x, z) → 0 as x →∞ and CsQ−QCs and C4Q are
Levinson terms, the conditionally integrable terms have been eliminated effectively.
In some cases, one can even choose Q such that Q′ = CsQ − QCs + C4. This will
be the case if Cs is already diagonal. Hence choosing the simpler approach Q =
−

∫∞
x
C4(t, z)dt will require that all the p4, q4 and p0,4 be conditionally integrable.
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Additional constraints may also arise from the requirement that CsQ − QCs and
C4Q to be Levinson terms. After Kummer-Liouville (K.L)-transformations and
two diagonalisations if the off diagonal terms of R as mentioned earlier are not
integrable, then one applies (I +Q)-transformations as follows. In this case let Cs =
Λ, C3 + C4 = R with Rii = 0, i = 1, · · · , 2n, making the substitution v = (1 + Q)v1

equation (2.8) turns out to be

(2.9) v′1 = (Λ + (I + Q)−1(ΛQ−QΛ + R−Q′ + RQ))v1.

Since the diagonal part of R is trivial by assumption, the equation ΛQ−QΛ+R = Q′

reduces to (2n − 1).2n scalar equations, for which the solutions can be estimated
well in terms of the coefficients Rij . These equations are

(2.10) Q′
ij = (λi − λj)Qij + Rij , i 6= j, i, j = 1, · · · , 2n.

Necessary for this (I + Q)-transformation is Q = o(1). Behncke [3] has shown,
however, that the contribution to the diagonals as a result of (I+Q)-transformation
are integrable and therefore irrelevant for spectral results.

The Kummer-Liouville (K.L)-transformation as used in the second order opera-
tors involved the change of variables but simplifies the expressions of the coefficients.
In [1], the K.L-transformation was adapted to asymptotic integration. This trans-
formation of (2.2) is formally derived from the transformation

(2.11) y(x) = µ(x)z(t), t = f(x) with f ′(x) = γ > 0.

On the first order system level (2.4), this amounts to:

(2.12) u(x) = F (x)v(t), t = f(x) with f ′ = γ > 0

where F is a 2n by 2n matrix. With this, the system equation (2.4) becomes

dv

dt
= γ−1[F−1CF − F−1F ′]v(t).

Because of the definition of the quasiderivatives (2.2), F will consist of the coeffi-
cients of the differential equation (2.1), µ, powers of γ and their derivatives. For
more details on how to compute F explicitly, see [2]. In our case a standard K.L-
transformation will suffice. This will amount to (w1 + w2)

1
2n = 1 [2].

Since the first (I + Q)-transformation will be followed by K.L-transformation,
one needs the following smoothness conditions

(2.13) µ2γ2kp3, µ2γ2m−1q3, µ2γ−1p0,3,

µ2γ2k+1p̂4, µ2γ2mq̂4, µ2p̂0,4 ∈ L1.

These conditions will guarantee that the (I + Q)-transformation and subsequent
K.L-transformations map the perturbation terms p3 + p4, q3 + q4, p0,3 + p0,4 into
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Levinson terms with respect to the variable t. Thus the condition for (I + Q)
back-transformation are

γ2k+2p̂k,4w
−1, γ2m+1q̂4w

−1, γp̂0,4w
−1 → 0.

In order to diagonalise (2.4), one needs the eigenvalues of (2.4). Expansion of
det(C − λ.1) = P and substituting the eigenvalue parameters λ by −iλ, although
this should be kept in our mind throughout and will be used without mentioning,
leads to

(2.14) PF (x, z, ν) =
n∑

k=0

pkλ2k + 2
n∑

j=1

qjλ
2j−1 − zw,

in case of (2.1) and will be called Fourier characteristic polynomial. This is a
polynomial with real coefficients if z is real, reflecting the symmetry of L. The
characteristic polynomial of (1.1) thus becomes

(2.15) P = λ2n + pλ2k+1 + qλ2m + p0 − z.

Necessary and sufficient conditions for the eigenvalues of (2.15) to be in three
groups of different magnitudes, that is, small, intermediate and large eigenvalues
such that | λsm |�| λint |�| λlg | is to demand that the coefficients p, q and p0

(with z absorbed into p0) satisfy

(2.16) | q |2(n−k)−1�| p |2(n−m) and | p |2m . | p0 |2(k−m)+1�| q |2k+1

so that the measure of the magnitude of the roots are given by

(2.17) | λlg |≈ mlg =| p |
1

2n−2k−1 , | λint |≈ mint =| q

p
|

1
2k−2m+1 ,

| λsm |≈ msm =| p0

q
| 1
2m .

This (2.16) implies mlg � mint � msm and thus the roots of (2.15) can be approx-
imated by iteration. Thus write (2.15) into the following three iteration schemes

(2.18) λ2n−2k−1
lg = −p +Rlg(λ), λ2k−2m+1

int = −q

p
+Rint(λ),

λ2m
sm = −p0

q
+Rsm(λ),

where Rlg(λ) = −qλ2m−2k−1
lg − p0λ

−2k−1
lg , Rint(λ) = −p0

p λ−2m
int − λ2n−2m

int

p and

Rsm(λ) = −p
q λ2k+1

sm − λ2n
sm

q . For msm, mint and mlg to be the measure of mag-
nitude of the eigenvalues, we have to show that Rl(λ), l = sm, int, lg is small. Thus
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Lemma 2.2. Assume p, q and p0 satisfy (2.16) such that msm, mint and mlg

are given by (2.17) then Rl(λ) = O(η) where η = max(msm

mint
, mint

mlg
) is a continuous

function and η = o(1) uniformly as x →∞.

Proof. It is enough to show this only for Rlg(λ) since the rest can be proved in a
similar fashion. Now write

Rlg(λ) = −q | p |
2m−2k−1
2n−2k−1 −p0 | p |

−2k−1
2n−2k−1 .

It suffices to show that each summand of this equation is O(η). Thus we have

| q || p |
2m−2k−1
2n−2k−1 =| q |−

2m
2k−2m+1 | p |

2k+1
2k−2m+1 | p |

2m
2n−2k−1 (

mint

mlg
)2k+1 = O(η)

and the second summand gives

| p0 || p |
−2k−1

2n−2k−1 =| p0 |
2m−2k−1

2m | q |
2k+1
2m (

msm

mlg
)2k+1 = O(η).

Since by (2.16) mlg � mint � msm, it implies that η = o(1) as x →∞. 2

Theorem 2.3. For any root λ of the polynomials in (2.18) there is a root λ̃ of P
(2.15) with | λ− λ̃ |= O(η)

Proof. Let λ0 be a fixed root of any of the polynomials in (2.18). Writing each of
them in their full expression say, for large eigenvalues, Plg = λ2n−2k−1

lg +p−Rlg(λ),
and equating P (2.15) to zero amounts to

(λ− λ0) = −Rl(λ)
Ql(λ)

,

where Ql(λ) is one of the factors of the polynomial Plg. Near λ = λ0 the right
hand side is analytic in λ and can be estimated uniformly in x by η(x). Since
also ∂λ(Rl(λ)

Ql(λ) ) can be estimated by η, a simple fix point argument proves the
theorem. 2

By considering the resultant or the discriminant of P and ∂λP, one can show
that there are only finitely many spectral values z for which P(λ, z) has multiple
roots. Let ω1 < ω2 < · · · < ωk denote all of the real spectral values z leading
to multiple roots. Following [2], the analysis will be restricted to small complex
neighbourhoods of z0 ∈ (ωi, ωi+1), i = 0, · · · , k, where ω0 = −∞ and ωk+1 = ∞.
For a given z0 ∈ (ωi, ωi+1), one can now choose ε > 0 and a > 0 so that P(λ, x, z) =
0 has no multiple roots for any

z ∈ Kε(z0) = {z | | z − z0 |≤ ε, Imz ≥ 0} = K

and x ≥ a. This is possible because the roots of P depend analytically on the
coefficients. Throughout the proof, it may be necessary to adjust a and ε repeatedly
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and this will be done without mentioning. Thus P in (2.15) has 2n distinct roots.

It is well-known that the matrix T0 formed with the eigenvectors %(λ, x) of C,
C(x)%(x, λ) = λ(x)%(x, λ), diagonalises C. The eigenvectors % of C for the eigenvalue
λ are given by, for 1 ≤ k ≤ n,

%k = λk−1,

%n+k = −iqkλk−1 +
n∑

r=k

(−1)k+rprλ
2r−k +

n−1∑
r=k

(−1)k+r2iqr+1λ
2r−k+1.

It is, however, advantageous to base the transformation T (diagonalising matrix)
on the eigenvectors wk = w(x, λk) ([10], Sections 3.1 and 3.3), where

(2.19) wk(x) = M
− 1

2
k %(λk, x) = M

− 1
2

k (1, λk, λ2
k, · · · ), Mk = ∂λP(x, z, λk).

In this case, the measure of the size of M -factors, Mk, are given by

(2.20) Mlg ≈| p |
2n−1

2(n−k)−1 , Mint ≈| q |
2k

2(k−m)+1 . | p |
1−2m

2(k−m)+1 ,

Msm =| q | 1
2m . | p0 |

2m−1
2m .

It follows from the properties of msm, mint and mlg that Mlg � Mint � Msm. Since
the roots are distinct, Mk is invertible ∀k = sm, int, lg. Thus, the transformation
T = (w1, w2, · · · , w2n) and

(2.21) u = Tv

leads to

(2.22) v′ = (Λ− T−1T ′)v with Λ = diag(λi(x, z)).

The matrix elements of T−1T ′ are given by (T−1T ′)ii = 0, a consequence of the

normalisation of the eigenvectors with the factors M
− 1

2
k leads to the following matrix

elements in the general case

(T−1T ′)jk = (λk − λj)−1M
− 1

2
j M

− 1
2

k (
n∑

l=0

(−1)lp′lλ
l
kλl

j(2.23)

− i
n∑

l=1

(−1)lq′l(λ
l
kλl−1

j + λl−1
k λl

j)).

[4, 10]. However, in the case of (1.1), one can estimate the matrix elements of T−1T ′

within the large, intermediate and small eigenvalue blocks by

p′

p
,

q′

q
,

p′0
p0 − z
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with the corresponding antisymmetry. Thus from (2.21), the other nonzero matrix
elements of T−1T ′ can easily be approximated by

(T−1T ′)lg,int ≈ | p |− 1
2 {p′(| λint |2k+ 1

2−n| λint |k + | λ3 |2k−n− 1
2 | λint |k+1)

q′ | λlg |2m−n− 1
2 | λint |2m−k, p′0 | λlg |−n− 1

2 | λint |−k},

(T−1T ′)lg,sm ≈ | q |− 1
2 {p′(| λlg |2k+ 1

2−n| λsm |2k+ 1
2−m

+ | λlg |2k−n− 1
2 | λsm |2k+ 3

2−m)

q′ | λlg |2m−n− 1
2 | λsm |m+ 1

2 , p′0 | λlg |−n− 1
2 | λsm |−m+ 1

2 },

(T−1T ′)int,sm ≈ | q |− 1
2 | p |− 1

2 {p′(| λint |k| λsm |2k+ 1
2−m

+ | λint |k−1| λsm |2k+ 3
2−m)

q′ | λ2 |2m−k−1| λ1 |m+ 1
2 , p′0 | λint |−k−1| λsm |−m+ 1

2 }

with the obvious antisymmetry. Thus if the coefficients are sufficiently smooth so
that T−1T ′ is small, the system (2.22) is almost diagonal. The matrix T−1T ′ can be
split up into a Levinson part R and a smooth part, that is, differentiable remainder
S. The Levinson part involves the coefficients p′2, q′2 and p′0,2. These are absolutely
integrable by assumption. The differentiable part S satisfies Sij(x, z) → 0 for
x → ∞ and Sij(x, z) ∈ L2 uniformly for z ∈ Kε(z0, ε). The system (2.22) thus
becomes

(2.24) v′ = (Λ + S + R)v with Λ = diag(λk(x, z))

which can be diagonalised again. Thus, using change of variables to enable second
diagonalisation, we have

(2.25) v1 = (I + B)v

where Bij = (λi − λj)−1(T−1T ′)ij with B = o(1). Therefore, necessary for second
diagonaliation we demand the following condition for elements within the blocks

(2.26)
{
| p′

p
|, | q′

q
|, | p′0

p0 − z
|,

}
| q

p0 − z
| 1
2m = o(1).

Denoting the outside block elements by (T−1T ′)lg,int = ξ3, (T−1T ′)lg,sm = ξ2 and
(T−1T ′)int,sm = ξ1, we therefore need similar conditions to (2.26) which is

(2.27) {ξ1, ξ2 ξ3} |
q

p0 − z
| 1
2m = o(1).

Equations (2.26) and (2.27) arise from the small eigenvalue blocks only. The re-
mainder terms after second diagonalisation can be approximated using the formula

R1 = −(I + B)−1(B′ + (T−1T ′)B)
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and the leading contribution to the diagonal is thus given by

(2.28) Λ2,ii = −
∑

j

(T−1T ′)ij(λj − λi)−1T−1T ′)ji.

The contributions resulting from (2.28) are integrable outside the small eigenvalue
block. Critical for the T -back transformation are the solutions from the large eigen-
value and the (B)lg,sm matrix elements. In this case, one needs that

(2.29) M
1
2
k M

− 1
2

j Bjk, M
1
2
k M

− 1
2

j (rk)j = o(1).

The asymptotic solution of (1.1) is then obtained on transforming back from v1 to
u. If p, q and p0 are twice differentiable, then after two diagonalisations and some
(I + Q)-transformations, equation (1.1) has solutions given by

uk(x, z) = T (I + B))(I + Q1) · · · (I + Ql).(2.30)

.(ek + rk(x, z)) exp
∫ x

a

λ̃k(t, z)dt,

with rk(x, z) → 0 as x →∞ and T being the diagonalising matrix obtained from the
eigenvectors of C. (I+B) is the matrix for second diagonalisation arising from (2.25)
while (I + Qr) are matrices arising from the (I + Q)-transformations. λ̃ is equal to
λ plus other contributions to the diagonals as a result of diagonalisations, for exam-
ple, the contribution in (2.28). In order to analyse the expression (2.30), formally
one shall also require that derivatives of higher order decay faster or they lead to
integrable terms so that any additional correction term to the diagonals of the sys-
tem as a result of transformations (diagonalisations and (I + Q)-transformations)
will not affect the asymptotics of the solutions.

Somewhat, more concretely, one needs for the coefficients f = p, q, p0

(2.31)
f (k)

f
∈ L 2

k x−kε k = 1, 2 ε > 0,

that is, each derivative introduces a factor L2x−ε. If the coefficients are differ-
entiable more often, this condition can be weakened in an obvious fashion. The
consequences of such a smoothness and decay condition are

(2.32) Qj+1 = o(Qj) = o(B) rk = o(B)

so that the solution (2.30) can be simplified further. Since one is mainly interested
in yk and its square integrability, one has to consider the first component of uk,
(uk)1 = yk so that with T1k = M

− 1
2

k

(2.33) yk(x, z) = (M− 1
2

k +
∑

j

M
− 1

2
j Bjk)(ek + rk(x, z)) exp(

∫ x

a

λ̃k(t, z)dt).
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The term M
− 1

2
k +

∑
j M

− 1
2

j Bjk (form factor) in standard situation is given by M
− 1

2
k

but with unbounded coefficients and eigenvalues of different magnitude, the second
term may be dominant. It also follows that the correction terms to the eigenvalues
are integrable under normal circumstances but in case of slower decay and higher
order smoothness this may not be true. In this study, however, we will assume
that this is not the case and

∑
j M

− 1
2

j Bjk is square integrable whenever M
− 1

2
k is

integrable.

3. Dichotomy Condition

Let z be a spectral parameter such that z = z0 + iη where η > 0, then write
the eigenvalues together with their correction terms as

(3.1) λk = λk0 + iη(∂λP(x, λk, z))−1, λk0 = λk(z0),

where (∂λP(x, λk, z))−1 = M−1
k [2].

Once the approximate values for the roots of the Fourier polynomial P(λ) and
the M -factors are known, one has enough ingredients to establish the uniform di-
chotomy condition for the eigenvalues of the differential operator (1.1). The uniform
dichotomy condition in Levinson’s Theorem guarantees an x-uniform control of the
unperturbed equation u′ = Λu which in some sense is also uniform in Imz. Since
the roots of P(x, λ, z) are calculated from characteristic Fourier polynomial (2.15),
the uniform dichotomy condition needed is equivalent to sign Im(λj(x, z)−λi(x, z))
being constant modulo L1 for all unequal pair of indices i and j. In spectral the-
ory, a z-uniform dichotomy condition will be needed but that will only be relevant
to small eigenvalues when w ≈ p0. In this study, slightly stronger conditions will
suffice. Before the proof of dichotomy condition, one ! needs the following results.

Theorem 3.1. Let

(3.2) u′ = (Λ(x) + R(x))u, a ≤ x ≤ ∞, Λ = diag(λ1(x), · · · , λ2n(x))

be an asymptotically constant system of differential equations satisfying for i =
1, · · · , 2n

(3.3) λi(x) = λi0 + λi1(x), with λi0 constant,

λi1 → 0 as x → ∞, λi1 continuous, λi0 distinct, R(x) ∈ L1. Moreover assume
Reλi0 = −α, α > 0, i = 1, · · · , k and | Re(λi0 − λj0) |≥ δ > 0, i = 1, · · · , k,
j = k + 1, · · · , 2n. Then (3.2) has k independent solutions

(3.4) ul(x) = O(exp(−αx +
∫ x

a

m(t)dt)), l = 1, · · · , k

where m(t) → 0 as t →∞.

Proof. Since L1-diagonal elements of R can easily be transformed into integrable
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terms using (I+Q)-transformations and finally added to the diagonals of Λ, we may
assume Rii = 0, i = 1, · · · , 2n. Now choose a ∈ R so large that

∑n
i,j=1

∫∞
a
| Rij(x) |

dx < ε, for ε > 0. ε will be fixed later. Let m(x) = maxi=1,··· ,k(Reλi,1(x)+) with
f+ denoting the positive part of f . We now follow the proof of Levinson’s Theorem
in Sect. 1.4 of Eastham’s book [10]. First change variables by

u(x) = v(x) exp(−αx +
∫ x

a

m(t)dt).

Then v(x) satisfies

(3.5) v′(x) = ((Λ(x) + (α−m(x)).1) + R(x))v(x) = (Λ1 + R)v

with Λ1 = diag(µ1(x), · · · , µ2n(x)) satisfying | Re(µl(x)−µj(x)) |≥ δ
2 for 1 ≤ l ≤ k,

j ≤ k + 1, · · · , 2n. For l ∈ {1, · · · , k}, however, we have µl(x) ≤ 0 and µl(x) → 0
as x → ∞. Thus, let P1 be the projection onto e1, · · · , ek, the coordinate vectors
ej for which Reµj ≤ 0, x ≥ a. Let Φ(x) = diag(exp

∫ x

a
µi(t)dt) be the fundamental

matrix of the unperturbed system of (3.2), and let Φ1 = P1Φ and Φ2 = (I − P1)Φ.
Then for l ≤ k any solution v of the integral equation

v(x) = Φ(x)el + Φ(x)
∫ x

a

P1Φ−1(t)R(t)v(t)dt(3.6)

− Φ(x)
∫ ∞

x

P2Φ−1(t)R(t)v(t)dt

satisfies the differential equation. The existence of this solution v(x) in (3.6) can
thus be shown by iteration method with v(0) = Φel

v(r+1)(x) = Φ(x)el + Φ(x)
∫ x

a

P1Φ−1(t)R(t)v(r)(t)dt(3.7)

− Φ(x)
∫ ∞

x

P2Φ−1(t)R(t)v(r)(t)dt.

Like in [10], there exists a constant K such that

‖Φ(x)P1Φ−1(t)‖ ≤ K, a ≤ t ≤ x < ∞ and

‖Φ(x)P2Φ−1(t)‖ ≤ K, a ≤ x ≤ t < ∞.

Choose ε > 0 and a sufficiently large so that Kε ≤ 1
8 . By induction on k, one can

easily show that ‖v(k)(x)‖∞ ≤ 2. Similarly, one sees as in Eastham’s book [10], that

‖v(r+1)(x)− v(r)(x)‖∞ ≤ (2Kε)‖v(r)(x)− v(r−1)(x)‖
≤ (2Kε)r‖v(1)(x)− v(0)(x)‖
≤ 4−r‖v(1)(x)− v(0)(x)‖.
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Thus, the sequence (vr)∞r=0 converges uniformly on [a,∞) to a solution vl of
(3.2). From ‖vl(a) − el‖∞ < 1

3 , we also see that all such solutions are linearly
independent. 2

This Theorem has the following intepretation. Assume the roots of the polyno-
mial P(λ, x, z) (2.15), for z0 ∈ R, are

α1 ± iβ1, · · · , αr ± iβr, γ2r+1, · · · , γ2n

with αj , βj , γl ∈ R. Then the nonreal eigenvalues lead to r square integrable so-
lutions, which decay exponentially, because of the Theorem. This holds regardless
of the dichotomy conditions. For the real eigenvalues, we have by implicit function
theorem

(3.8) γl(z) = γl(z0) + (∂λP(x, γl, z))−1(z − z0) for small z − z0.

Thus the dichotomy condition holds if

(∂λP(γl)) 6= (∂λP(γm)) l 6= m,

because (∂λP(λ)) is real. γl = γl(z0) will then contribute to the deficiency in-
dex if (∂λP(γl)) > 0, because the corresponding exponent is iγl(z0 + iη) ≈
iγl(z0)− η(∂λP(γl(z0)))−1. The associated eigenvalue solutions, however, will lose
their square integrability as η → 0+ if the coefficients are bounded. Since the signs
of (∂λP(γl)) are evenly distributed, half of the γ will lead to square integrable so-
lutions for η = Imz > 0 and the complementary γ’s will lead to square integrable
solutions in the lower half plane. This shows that for bounded coefficients with even
number of eigenvalues say 2n, L is limit point and defL = (n, n). If the coefficients
are unbounded, some of the solutions related to γ-eigenvalues may stay square inte-
grable as Imz ↘ 0. In this case the deficiency indices may be defL = (n+d, n+d),
0 ≤ d ≤ n if d solutions of Ly = zy associated to real roots of P(x, λ, z)) stay square
integrable. But in all cases, it suffices to check the dichotomy condition only for the
real roots of P(x, λ, z)), see [7].

Theorem 3.2(Bezout’s Theorem, [12] Theorem 7.5). Suppose two plane algebraic
curves C1 and C2 have no common curve components (that is, the polynomials
defining C1 and C2 have no common factor). Then, their intersection number is
given by

(C1 · C2) =
∑

p∈C1∩C2

(C1 · C2)p = degC1 · degC2.

Bezout’s theorem implies that two irreducible algebraic curves intersecting in in-
finitely many points are identical. That is, two distinct irreducible algebraic curves
intersect at most in finitely many points.
In the next lemma, Lemma 3.3, the eigenvalues will be considered as functions of x
and z.
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Lemma 3.3 Assume that

(i) the eigenvalues of each eigenvalue group, that is, large, intermediate and
small, are distinct,

(ii) the nonreal eigenvalues of each eigenvalue group have an imaginary part
Imλj ≈ mj, where j = lg, int, sm and the real roots λ and µ of the same
eigenvalue group j satisfy ∂λP(λ) 6= ∂λP(µ) λ 6= µ,

(iii) the group of small eigenvalues λsm satisfy (i) and (ii) if w � p0 and satisfy
z-uniformly dichotomy condition if w ≈ p0.

Then the eigenvalues of the Fourier polynomial (2.15) satisfy the uniform dichotomy
condition.

Proof. The proof is divided into two parts, that is, the dichotomy condition between
eigenvalues of different groups and the dichotomy condition between the eigenvalues
of the same group.

Eigenvalues of different groups
Three cases arise when one considers (3.1). Assume l and m denote different groups
of large, intermediate and small eigenvalues such that | λl |�| λm |. Then

a) Imλl0 ≈ ml, Imλm arbitrary.
The dichotomy condition is satisfied because ml � mm,

b) Imλl0 = Imλm0 = 0. The dichotomy condition is still satisfied, because
M−1

l � M−1
m ,

c) Imλl0 = 0, Imλm0 ≈ mm � M−1
m � M−1

l . The dichotomy condition is again
satisfied.

Eigenvalues of the same group
Now assume that λ(z) and µ(z) are eigenvalues of the same group and not from
the small eigenvalue group. Then by Theorem 2.1, one only needs to check the
dichotomy condition for real eigenvalues. But since λ(z) and µ(z) satisfy the condi-
tion ∂λP(λ(z)) 6= ∂λP(µ(z)) if λ(z) 6= µ(z) by assumption, it implies that λ(z) and
µ(z) have different slopes off the real axis. This is the required uniform dichotomy
condition between λ(z) and µ(z). If w � p0, then the above reasoning applies to
the small eigenvalue group too.

Now it remains to establish the z-uniform dichotomy condition within the group
of small eigenvalues if w ≈ p0. In this case, the influence of large and intemediate
eigenvalue groups to the small eigenvalue group will be assumed to be negligible and
thus irrelevant. For the small eigenvalue group, the dichotomy condition is needed
uniformly in z. Thus let −∞ < ω1 < ω2 < · · · < ωk < ∞ be the enumeration of all
the spectral values which lead to double roots of the Fourier polynomial (2.15) P.
Thus with z ∈ K ∩ R one can construct a set

U1,2 =
{

z ∈ (ω1, ωi+1) |
dλ1(z)

dz
=

dλ2(z)
dz

}
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for two distinct real roots of the small eigenvalue group. If U1,2 is countable with
accumulation points (ωi, ωi+1), then one has uniform dichotomy condition satisfied
for a real z outside U12, because λ1(z + iη) = λ1(z) + iwη dλ1(z)

dz with dλ1(z)
dz real by

implicit function theorem. Since the eigenvalues from the small eigenvalue group
depend analytically on q and p0 − z, this extends immediately to λ1(z + iη) by
continuity. This, however, is the required uniform dichotomy condition for λ1(z)
and λ2(z) for the small eigenvalue group. If U1,2 has accumulation point inside
(ωi, ωi+1), analyticity gives

dλ1(z)
dz

=
dλ2(z)

dz
or λ1(z) = λ2(z) + K

for z ∈ (ωi, ωi+1). Finally one has to show that the above relation is possible only
if K = 0. To see this, consider the algebraic curves C1 and C2 generated by the
zeros of the polynomials P(λ1, z) and P(λ2, z) respectively. It is easy to see that C1

and C2 are irreducible because λ1 and λ2 appears linearly and the coefficient q 6= 0.
The Riemann surfaces generated by C1, respectively C2, have a common segment
since λ1(z) = λ2(z) + K and hence by Bezout’s Theorem C1 and C2 must agree and
this can only be true if λ1(z) = λ2(z) which again proves the uniform dichotomy
condition for the small eigenvalue group. 2

For simplicity, we shall also require the coefficients to be power bounded and
exclude the occurrence of logarithmic terms in the exponents, that is,

(3.9) p, q, p0 = O(xN ), | w

Mk
(x) |≤ Cx−1−ε or | w

Mk
(x) |≥ Cx1+ε,

where k is inteprated as lg, int and sm. This assumption avoids the interference
of the form factors with the exponents. It can be avoided at the cost of further
technical assumptions.

4. Spectral Results

Since the coefficients are unbounded, one is likely to have non-limit-point, that
is, defL = (n + r, n + r) thus we need a theorem on how the selfadjoint extension
H of L can be defined and subsequently how to construct M -matrix, because it is
the M -matrix that connects the asymptotics of the eigenvalue solutions with the
spectrum of the selfadjoint realisation [15].

Theorem 4.1. Let L be a formally symmetric differential operator of order 2n
on the interval [a,∞) for which a is a regular boundary endpoint. Assume the
deficiency index of L is (n+r, n+ r). Then, the self adjoint extensions H of L with
separated boundary conditions are defined by the domain

D(H) =
{

y ∈ D(L∗) | (α1, α2)y(a) = 0,

lim
x→∞

w∗k(x)J y(x) = 0, k = 1, · · · , r
}

.
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Here α1, α2 satisfy the conditions in (2.5). The functions w1, · · · , wr are linearly
independent modulo D(L) at infinity and may be chosen as eigenfunctions of L∗w =
zw, z ∈ C \ R.
They also satisfy limx→∞ w∗k(x)Jwj(x) = 0 for j, k = 1, · · · , r

Proof. The proof follows at once from
(
[18], Theorems 4.6, 5.4b and 5.5

)
and

[15]. 2

The functions wk are said to be linearly independent modulo D(L) at infinity if
there exists no non-trivial linear combination of corresponding modified functions
wj,∞ which are identically zero in the neighbourhood of a and for a sufficiently large
x, the modified functions coincide with wj in D(L).

Theorem 4.2. Let L be a four term differential operator of the form (1.1). Assume
that p0, p and q admit decomposition (1.2), are real valued, locally integrable, twice
differentiable and satisfy the condtions (2.12), (2.16), (2.26), (2.27), (2.30) and (3.9).

Assume also
∑

j M
− 1

2
j Bjk is square integrable whenever M

− 1
2

k is integrable. More-
over, assume the coefficients p0 and q to be asymptotically constant when w ≈ p0.

(i) If | p |
2(m−n)+1
2(n−k)−1 is integrable, then (defL)lg = (n − k, n − k). The eigenvalue

solutions that are square integrable are z-uniformly square integrable.
If | p |

2(m−n)+1
2(n−k)−1 is not integrable and p > 0, then (defL)lg = (n− k− 1, n− k)

and if p < 0 then we have (defL)lg = (n− k, n− k − 1).

(ii) If | q |
−2k

2(k−m)+1 · | p |
2(m−1)

2(k−m)+1 is integrable, then k−m+1 eigenvalue solutions
are uniformly square integrable and (defL)int = (k −m + 1, k −m + 1).

If | q |
−2k

2(k−m)+1 · | p |
2(m−1)

2(k−m)+1 is not integrable and if q
p > 0 (q < 0, p < 0),

then (defL)int = ((k − m), (k − m) + 1) and if q
p < 0 (q < 0, p > 0), then

(defL)int = (k −m + 1, k −m).
Since the coefficients are unbounded, the small eigenvalue group will behave
as those of a full operator since they depend analytically on z and they are
even in number, that is, 2m, thus

(iii) If w � p0 then (defL)sm = (m + 1,m + 1), σ(H)sm is discrete if | q |−1
2m ,

| p0 |
−2m+1

2m is integrable and (defL)sm = (m,m), σ(H)sm = R if | q |−1
2m ,

| p0 |
−2m+1

2m is not integrable.
If p0 ≈ w, then the results of [2] apply, that is, there exists a constant c such
that (defL)sm = (m,m), (−∞, c) ⊂ σac(H, 1)sm, σess(H)sm∩ [c,∞) = ∅ and
if p0(x) → −∞, (defL)sm = (m,m) and σ(H)sm is discrete.

(iv) If | p |
2(m−n)+1
2(n−k)−1 , | q |

−2k
2(k−m)+1 · | p |

2(m−1)
2(k−m)+1 and | q |−1

2m · | p0 |
−2m+1

2m are square
integrable with p0 →∞ then (defL) = (n + 2, n + 2) and σ(H) is discrete.

(v) If | p |
2(m−n)+1
2(n−k)−1 , | q |

−2k
2(k−m)+1 · | p |

2(m−1)
2(k−m)+1 and | q |−1

2m · | p0 |
−2m+1

2m are
not square integrable, p ≶ 0, q ≶ 0, p0 → ∞ then (defL) = (n, n) and
σac(H) = R of multiplicity 2.
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Proof. Let L be 2n-th order differential operator generated by (1.1). Then by using
quasiderivatives, the operator can be written in the first order system (2.4). An
application of (I + Q)-transformation will eliminate conditionally integrable terms,
that is f4 where f = p, q, p0. One then applies a standard K.L-transformation in
order to obtain w = 1. In order to bring the first order system into Levinson’s
form, one applies two diagonalisations since the smooth part of the coefficients are
assumed to be twice differentiable. The system will be almost in diagonal form
and if not, then the off diagonal elements that are conditionally integrable can be
transformed into integrable terms by application of more (I + Q)-transformations.
After all these transformations, the eigenvalue solutions will be given by (2.33).

The deficiency indices can thus be read off from the asymptotics of the eigen-
value solutions as Imz ↘ 0. Thus assume wM−1

lg is integrable, then the solutions
from the real eigenvalue is square integrable both in the upper and lower half planes
and hence contributes to the deficiency indices. If wM−1

lg is not integrable, then
this solution is integrable in the half plane if p > 0 and fails to be integrable in the
lower half plane. The situation is reversed when p < 0. The deficiency indices will
therefore be unequal. With a similar reasoning, the deficiency indices of the other
groups of eigenvalues can be obtained.

Now assume that wM−1
lg , wM−1

int and wM−1
sm are all integrable then all square

integrable solutions are z-uniformly square integrable. Thus the solutions from real
eigenvalues in all the three eigenvalue groups are z-uniformly square integrable,
L is non limit point and these solutions contribute at most to discrete spectrum
only. The results of Theorem 4.1 can be applied for one to define a selfadjoint
realisation H of L. If wM−1

lg , wM−1
int and wM−1

sm are not integrable, p0 →∞ while
p > 0(p < 0) and q < 0(q > 0), then defL = (n, n) and thus selfadjoint extension of
L exists. Thus for spectral results, one needs the M -matrix. In order to construct
the M -matrix, one then uses Remling’s results [15].

Thus, let Yα(., z) = (Uα(., z), Vα(., z)) be the fundamental matrix of (2.4) with
initial values

(4.1) Yα(a, z) =
[

α∗1 −α∗2
α∗2 α∗1

]
, α1, α2 satisfy (2.5).

Uα, Vα are 2n by n complex-valued matrices whose every column solves τu = zu
and that Vα(., z) satisfy the self-adjoint boundary conditions at a. Therefore, the
columns of Yα(., z) span the 2n-dimensional vector space of solutions of (2.4).

Now fix the boundary conditions to the right through α = (α1, α2), α1 = I
and α2 = 0 and using the techniques of Hinton and Shaw [14], for Imz 6= 0, the
M -matrix, M(z) ∈ Cn×n is defined by

χ(x, z) = Yα(x, z)
[

In

M(z)

]
∈ L2[a,∞).

M(z) is analytic for Imz 6= 0 and ImM(z) is positive definite in the upper half
plane. The columns of χ(x, z) form a basis for the square integrable solutions of
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(2.4). Let χ(x, z) =
[

W1(x, z)
W2(x, z)

]
be 2n by n system of square integrable solutions

of (2.4), then using Remling’s results [15], there exists a regular n by n matrix C
such that

Yα(x, z)
[

In

M(z)

]
=

[
W1(x, z)
W2(x, z)

]
C.

Thus if one uses Dirichlet boundary conditions at a, one obtains

M(z) = W2(a, z)W−1
1 (a, z).

Now for the set K, the solutions χ(., z) of the first order exist for all z ∈ K and
uniformly continuous in z. This in turn shows that the spectrum is not singular
continuous and apart from the isolated poles, the density of the spectral measures
of H is continuous. one thus has

lim
ε→0+

M(µ + iε) = M(µ+), z = µ + iε

exists finitely and is bounded for all z ∈ K. From the resolvent calculus of differen-
tial operators, it follows that the M -function is the Borel transform of the spectral
measure. Thus the existence of a finite limit implies the absolute continuity of the
corresponding spectral measure ρα and in fact 1

π ImM(µ+) gives the density of the
absolutely continuous spectrum [15]. The rank of ImM(µ+) is thus the multiplicity
of σac(H). In this case rank ImM(µ+) = 2. It remains to extend the results to
x = 0 and other boundary conditions. For this, the results of Remling ([15], sect.6)
can be applied. Thus µ belongs to the associated absolutely continuous spectrum if
and only if there is at least one eigenvalue λ(x, µ), which for x →∞, its eigenvalue
solution loses square integrability as Imz ↘ 0. The multiplicity of the absolutely
continuous spectrum is then given by the number of these eigenvalues. 2
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