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ABSTRACT. We show that the Links—Gould polynomial of a link has finite type coeffi-
cients in a multivariate series expansion, and express the leading coefficients in terms of
the linking numbers of a link.

1. Introduction

The Links-Gould polynomial [11] is a quantum invariant which is derived from
the one-parameter family of four dimensional representations of the quantum su-
peralgebra Ug[gl(2|1)]. D. De Wit, L. H. Kauffman and J. R. Links [4] gave an
explicit form of the R-matrix for the invariant, and showed that it is a powerful
invariant through its evaluation. The invariant is complete for all prime knots of up
to 10 crossings [3] and for the Kanenobu knots [8], [9]. The Links-Gould polyno-
mial is not only a powerful invariant. It is also a two-variable generalization of the
Alexander-Conway polynomial [7]. In this paper, we show that the Links—Gould
polynomial has finite type coefficients in a multivariate series expansion with respect
to symmetrical variables, where an invariant is finite type [2], [14] if it vanishes for
singular knots with finite singularities. Furthermore, we determine the leading co-
efficients in terms of the linking numbers of links. This result is analogous to that
on the first coefficient of the Conway polynomial of a link due to Hoste [5].

For an ordered oriented r-component link L = K U- - -UK,, we denote by A; ;(L)
the linking number of K; and K;. Let ® be a graph with r vertices py,--- ,p, and
e(?,7) edges joining p; and p;. We define the invariant Ag by

A (L) = [ X (L),

i<j

Let C, be the set of cycle graphs with r vertices p1,-- - , p,, where a cycle graph is a
connected graph which forms one cycle. Then ) 4. As(L) is well-defined for an
unordered oriented r-component link L. For example,
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> Ae(L) = Ara(L) A (L),

PeCs

> Aa(L) = M a(L)Aas(L)As (L),

PeCs

> Aa(L) = Ma(L) A 3(L)As a(L) A1 (L) + A1 2(L) A2, a(L)Aa 3(L)As 1 (L)
PeCy

+ /\1,3 (L)A3,2(L)A274 (L))\471 (L)

We denote by LG(L; tg,t1) the Links—Gould polynomial of an oriented link L.
Let ag(L) be the finite type invariant of type 0, defined by

(L) 1 if L is a knot,
a frd
0 0 otherwise.

In [7], we showed that LG(L;to,t;) € Z[t=', '] and the equalities
LG(L, to, 1) = LG(L, 1, tl) = ao(L).

Then the Links—Gould polynomial is expressed in the following form:
LG(L;to,t1) = ao(L) + Y aij(L)(to — 1)'(ty — 1)/
i,j=1

in Z[[to — 1,t; — 1]], where a; ;(L) € Z.

Theorem 1. The coefficient a; ;(L) is a finite type invariant of type i +j. Let r be
the number of components of L. For i+ j < r, we have a; ;(L) = 0. Furthermore,
for i+ j =r, the leading coefficients a; j(L) are given by

a;;(L) = —2cec, Me(L) fi=j=1,
“ -2(172) >cec, Ac(L)  otherwise.

2. Preliminaries

We recall the definition of the Links—Gould polynomial. Let V be a four di-
mensional vector space with a basis {e;}?_;, and let V* be its dual. We denote the
dual basis by {e}}r;: A

i(eg) =3,
where 5} is the Kronecker symbol. We define R: V®V — V ®V by

toelt — (€33 + €33) + tredi + (to — 1) (31 + €31) + (to — 1)(1 — t1)edt

+(t— 1) (€83 +edd) + (totr — 1)eB3 + (et + eth) — t5/°t1% (¢33 + e2)
1/2 < 1/2

+ty/% (edF +e3h + el +eld) + 1177 (3 + edF + e + ed})

1/2,1/2
— 15" ((to — 1)1 — t2))"% (€33 + e88) + ((to — 1)(1 — t2))"/? (2 + edh)
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Figure 1:

where the map 6;1132 VeV =V ®V is defined by
6311;22 (ekl ® ekz) = 6& 6ﬁeil & €, -
We definen: VeV* - Candn: V*®@V — C by
nie; ®ej) = 5;- and n(e] ®e;) = pic?;-,
where (p1, pio, pi3, pra) = (to, —t;*, —to,t; ). We define u : C — V@ V* and @ :
C—-V*®V by

4 4
u(l) =Y pite;@e; and a(l) =Y e ®e;
i=1 i=1

Any oriented tangle diagram can be expressed up to isotopy as a diagram com-
posed from the elementary tangle diagrams shown in Figure 1. Furthermore any
oriented tangle diagram can be expressed up to isotopy as a sliced diagram which is
such a diagram sliced by horizontal lines such that each domain between adjacent
horizontal lines has either a single crossing or a single critical point.

We associate the maps idy, idy«, R, R™!, n, 71, u, and @ to elementary oriented
tangle diagrams as described in Figure 2. Corresponding to any oriented tangle
diagram D, we may then obtain a linear map [D] as the composition of tensor
products of copies of the linear maps associated to the elementary tangle diagrams
within D. For example,

t@ = (ldv ® ’I’L) (R X ldv*)(ldv ® U).

Let T be a (1,1)-tangle represented by a diagram Dr. We denote by T the
closure of T'. The Links—-Gould polynomial of the link T is defined by the following
identity: R

[Dr] = LG(Tto, t1)idy.

For the details we refer the reader to [4], [13].

3. A family of singular links

A singular link is an immersion of disjoint circles into S, which has transverse
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double points and no other singularities. Let v be an isotopy invariant for oriented
links, which takes values in an abelian group. We may extend v to a singular link
invariant via the Vassiliev skein relation:

v (X) =0 () =X

A singular link invariant v is called a finite type invariant of type d if v(L) = 0 for
any singular link L with more than d singular points.

For a finite type invariant v; of type d; (i = 1,2), the product vivs is a finite
type invariant of type di + d2. We remark that (vyv2)(L) is defined as follows: If L
has a singular point, we use the Vassiliev skein relation. Then we use the equality
(v1v2)(L) = v1(L)va(L) for an oriented singular link L without singular points. For
a graph ® with d edges, the invariant Ag is a finite type invariant of type d.

A d-configuration is d pairs of 2d points on disjoint circles. A singular link
with d singular points respects a d-configuration if each singular point represents a
pair of the d-configuration. In Figure 3, we give an example of a d-configuration
and a singular link respecting it. For any d-configuration, there exists a singular
link respecting it. The configuration given in Figure 4 is called inadmissible. A
configuration is called admissible if it is not inadmissible. For the details we refer
the reader to [1], [2].

For a d-configuration « with r circles S1,--- ,S,, we define a graph ®(«) with
r vertices p1,---,pr and d edges by deforming the circle S into the vertex pj
and a chord joining S; to S; into an edge joining p; to p,; (see Figure 3). Let
o/f’r; 1 <4 < fqr be a list of the all distinct admissible d-configurations with r
circles S1,---,.S,.. We set
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Y

Figure 4:

AT = (a1 <0 < fau ),
AL = {a € A% |« is disconnected},
AT = {a € A% | a is a spanning tree},

Ald’r = {a € A%" | o is a connected graph with one cycle of length 1},

for [ > 2. We remark that A>" = 0 if d # r — 1 and that .Afl’r =(if d # r. For
example, we have

AO’QZA&?:{ . }’ A1’2:Aé’2:{ l }’
22 42,2 20 O :
A2 = A2 A2 { - M}U{Q}

0,3 _ 40,3 1,3 _ 41,3
A" = A, AV = A,

AP = ABUATS, AP = {L /\ A}

AP = ATB U AP U A,
=/ 72 AN AN N AL a={AL

Let 6; and 63(n) be the singular links as shown in Figure 5. For a € A%", we
choose an ordered split singular link M («/) respecting «. For a € Ag’r, let M(«) be
the connected sum of d copies of 6; such that M («) respects . For o € A;j’r7 let
M («) be the connected sum of 65(1) and d — I copies of 6, such that M («a) respects

Q.

We set
M= (M(a)|a € A%}, ML= {M(a)|a € ALY},
MET = (M(a)|a € A, MPT = {M(a)|a € AP},

Aqd,r . 0, d, Aqd,r . 0, d,
MET = MPT U U MO MOO’".—MOOTU-~-UMOO’”.
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Then
Mér ifd<r—2,
M= & M UMy ifd=r—1,
M UMY UME U UMET i d =

Put ®(M(a)) := ®(a) for a € A4". We have the following lemma by direct
calculation.

Lemma 2. Let C be a cycle graph of length r > 3. For M € /T/l/”, we have

1 ifd(M)=C,

0 otherwise.

AC(M):{

4. Proof of theorem 1

The Links—Gould polynomial satisfies the following skein relations [6]:

G( )+tot1LG(\:\’) (s+1 LG()() s+t0t1LG(X),
() -6 (JOh) =a-926() () +-vre ().

where s = —(tg — 1)(t1 — 1). Put 7; = t;, — 1 for i = 0,1. By using these skein
relations, we obtain the following skein relation:

Q’Q’) — (To+T1 — ToT1) LG (Q) + (o1E + T8 LG ()

— (2TyTy + TyT? + T2Ty + T2T?) LG (> () .

S
S

1) LG

/N

We denote by Li# Lo a connected sum of L and L. Then we have

2) LG(L1#Ls) = LG(L1)LG(Ly).
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Lemma 3. Forn > 2, we have

LG(Gl) = —T()Tl,
LG(02(n)) = =2(To + T1)"*ToTh + Z a; (02 (n))TETY .

i+j>n

Proof. By the definition of the Links—Gould polynomial, we have

LG(91) = _CZ—VOCZH7
LG(62(1)) =0,
LG(09(2)) = —2T0T) — ToT? — T3Ty — TET?,
LG(05(3)) = =2(To + T)ToT1 + Y a;;(02(3))T317,

i+5>3
LG(02(n)) = (To + Ty = ToTy) LG(B2(n — 1)) + (ToT{ + T3T1) LG (62(n — 2))
+ 24+ To+ Ty + ToT)(—1)" Ty~

for n > 3, where the last equality follows from the skein relation (1) and the
equality (2).

We show the second equality in Lemma 3 by induction on n. Let m > 4. we
suppose the equality for n < m. Then we have
LG(05(m)) = (Ty + Ty — TyT)LG (05 (m — 1)) + (ToT? + T3T1) LG (6 (m — 2))

+ @2+ To+ Ty + T (- D)™ttt
==2(Th + T))" *ToTy + Y ai;(62(m))THTY. O

i+j>m
An invariant for unordered links is that for ordered links by forgetting the order
of an ordered link.

Lemma 4. For M € M%", we have
am-(M) =0.
For M € M{™"", we have

won = [CUT i =2,
i 0 otherwise.

For M € M]"" (1 > 2), we have

=2(07)) ifitji=r=1

i (M) =
@i (M) {0 ifitg<or—L.



56 Atsushi Ishii

Proof. The Links—Gould polynomial vanishes for a split link, and so is the coefficient:
ai;(M)=0for M € M.

For M € M{ ™" by Lemma 3 and the equality (2), we have LG(M) =
LG(6,)" = (—=1)" 7y~ 'Ty !, which implies

0 (M) = (=)=t ifit+j=2r-2
I o otherwise.

For M € M;"" (I > 2), by Lemma 3 and the equality (2), we have

LG(M) = 2(=1)"""N Ty + T)! 2Ty 4 > an (M)TETY,
s+t>2r—1

which implies
=207 ifit+j=r=1,

ij (M) =
ai.g (M) {0 ifi45<2r—L

Proof of Theorem 1. By the definition of the R-matrix, we have

—1jto=14+aoh __
R—R |t1:1+a1h = hX,

for some 16 x 16 matrix X such that X|,—o € Mlg((C[agEl/Q,alﬂ/Q]). Then, for a
singular link L with more than d singular points (d > 2), we have

LG(L;1+ aoh, 1+ anh) = Y a;j(L)ajalh™,
i+j>d
which implies that >>, ., a; j(L)ajhal is a finite type invariant of type d. This
argument is essentially the same with [2]. Hence a; (L) is a finite type invariant of
type ¢ + j. N
For M € M®" and an r-component singular link L, there exists an integer
m®"(M; L) such that

oD)= 3 mtr(M; Lyo(M),
MeMdr

for any finite type invariant v of type d (cf. [2], [10], [12]). We suppose i +j < r —2.
Putting v = a; ;, by Lemma 4, we have

a;j(L)= > m™""(M;L)a; (M) =0.
MeMIEI™
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We suppose ¢ + j = r — 1. Putting v = a; ;, by Lemma 4, we have
aij(L) = > m' 7 (M; L)a; j(M) = 0.
MeMET UMy ™T
We suppose i + j = r = 2. By [12], we have
A2, (L) — Mi2(L
w2205 0) = (), m*2(0n(2); ) = 2B 2]
Putting v = a1,1, by Lemma 4, we have
a11(L) = > mtIT(M; L)ay 1 (M)
MeMZ2UMEZUME?
= m2’2(91; L)am(ﬁl) + m2’2(92 (2), L)a1,1(92 (2))
= _A%Q(L)
==Y Ac(D).
CeCy

We suppose i +j = r > 3. Let N € M}". Putting v = Ag(y), by Lemma 2, we
have
Nowy(L) = Y m""(M; L)Ag(n) (M) =m"" (N3 L).
MeMnr
Putting v = a; ;, by Lemma 4, we have

T

aij(L)= > m"(M;L)ai;(M)+» > m""(M;L)a;;(M)

MeMi~ T =2 MeM]™
r—2
= > _2<¢ _ 1)A<I>(M>(L)
MeMp™
r—2
(123) X e O
cec,
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