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Abstract. The main aim of this article is to introduce a new class of sequence spaces

using the concept of n-norm and to investigate these spaces for some linear topological

structures as well as examine these spaces with respect to derived (n-1)-norm. We use an

Orlicz function, a bounded sequence of positive real numbers and some difference operators

to construct these spaces so that they become more generalized and some other spaces can

be derived under special cases. These investigations will enhance the acceptability of the

notion of n-norm by giving a way to construct different sequence spaces with elements in

n-normed spaces.

1. Introduction

Throughout the article w, `∞, c, c0, `p denote the classes of all, bounded, con-
vergent, null and p-absolutely summable sequences of complex numbers.

The notion of difference sequence space was introduced by Kizmaz [9], who
studied the difference sequence spaces `∞(∆), c(∆) and c0(∆). The notion was
further generalized by Et and Colak [1] by introducing the spaces `∞(∆s), c(∆s)
and c0(∆s). Another type of generalization of the difference sequence spaces is
due to Tripathy and Esi [14], who studied the spaces `∞(∆m), c(∆m) and c0(∆m).
Tripathy, Esi and Tripathy [15] generalized the above notion and unified these as
follows:

Let m, s be non-negative integers, then for a given sequence space Z we have

Z(∆s
m) = {x = (xk) ∈ w : (∆s

mxk) ∈ Z},

where ∆s
mx = (∆s

mxk) = (∆s−1
m xk −∆s−1

m xk+m) and ∆0
mxk = xk for all k ∈ N , the
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difference operator is equivalent to the following binomial representation:

∆s
mxk =

s∑
ν=0

(−1)ν

(
s
ν

)
xk+mv.

Taking m=1, we get the spaces `∞(∆s), c(∆s) and c0(∆s) studied by Et and Colak
[1]. Taking s=1, we get the spaces `∞(∆m), c(∆m) and c0(∆m) studied by Tripathy
and Esi [14]. Taking m=s=1, we get the spaces `∞(∆), c(∆) and c0(∆) introduced
and studied by Kizmaz [9].

Let m, s be non-negative integers, then for a given sequence space Z we intro-
duce

Z(∆(s)
m ) = {x = (xk) ∈ w : (∆(s)

m xk) ∈ Z},

where ∆(s)
m x = (∆(s)

m xk) = (∆(s−1)
m xk−∆(s−1)

m xk−m) and ∆(0)
m xk = xk for all k ∈ N ,

the difference operator is equivalent to the following binomial representation:

∆(s)
m xk =

s∑
ν=0

(−1)ν

(
s
ν

)
xk−mv,

where xk = 0, for k < 0.
The concept of 2-normed spaces was initially developed by Gähler [3] in the

mid of 1960’s, while that of n-normed spaces can be found in Misiak [11]. Since
then, many others have studied this concept and obtained various results, see for
instance Gunawan [5, 6] and Gunawan and Mashadi [8].

Let n ∈ N and X be a real vector space of dimension d, where n ≤ d. A real
valued function ||., ..., .|| on Xn satisfying the following four conditions

(1) ||x1, x2, ..., xn|| = 0 if and only if x1, x2, ..., xn are linearly dependant,

(2) ||x1, x2, ..., xn|| is invariant under permutation,

(3) ||αx1, x2, ..., xn|| = |α|||x1, x2, ..., xn||, for any α ∈ R,

and

(4) ||x + x′, x2, ..., xn|| ≤ ||x, x2, ..., xn||+ ||x′, x2, ..., xn||

is called an n-norm on X, and the pair (X, ||., ..., .||) is called an n-normed space.
As an example of an n-normed space we may take X = Rn being equipped

with the n-norm ||x1, x2, ..., xn||E = the volume of the n-dimensional parallelopiped
spanned by the vectors x1, x2, ..., xn, which may be given explicitly by the formula

||x1, x2, ..., xn||E = |det(xij)|,

where xi = (xi1, ..., xin) ∈ Rn for each i = 1, 2, ..., n.
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Let (X, ||., ..., .||) be an n-normed space of dimension d ≥ n ≥ 2 and
{a1, a2, ..., an} be a linearly independent set in X. Then the following function
||., ..., .||∞ on Xn−1 defined by

||x1, x2, ..., xn||∞ = max{||x1, x2, · · · , xn−1, ai|| : i = 1, 2, ..., n}

defines an (n-1)-norm on X with respect to {a1, a2, ..., an}.
Let n ∈ N and (X, 〈., .〉) be a real inner product space of dimension d ≥ n.

Then the following function ||., ..., .||S on X × · · · ×X (n factors) defined by

||x1, x2, ..., xn||S = [det(〈xi, xj〉)]
1
2

is an n-norm on X, which is known as standard n-norm on X. If we take X = Rn,
then this n-norm is exactly the same as the Euclidean n-norm ||., ..., .||E mentioned
earlier. For n=1, this n-norm reduces to usual norm ||x1|| = 〈x1, x1〉

1
2 (for further

details one may refer to Gunawan and Mashadi [8]).
A sequence (xk) in an n-normed space (X, ||., ..., .||) is said to converge to some

L ∈ X in the n-norm if

lim
k→∞

||xk − L, z1, ..., zn−1|| = 0, for every z1, ..., zn−1 ∈ X.

A sequence (xk) in an n-normed space (X, ||., ..., .||) is said to be Cauchy with
respect to the n-norm if

lim
k,l→∞

||xk − xl, z1, ..., zn−1|| = 0, for every z1, ..., zn−1 ∈ X.

If every Cauchy sequence in X converges to some L ∈ X, then X is said to be
complete with respect to the n-norm. Any complete n-normed space is said to be
n-Banach space.

We procure the following results those will help in establishing some results of
this article.

Lemma 1 (Gunawan and Mashadi [8], Corollary 2.2). A standard n-normed space
is complete if and only if it is complete with respect to the usual norm ||.|| = 〈., .〉 1

2 .

Lemma 2 (Gunawan and Mashadi [8], Fact 2.3). On a standard n-normed space
X, the derived (n − 1)-norm ||., ..., .||∞, defined with respect to orthonormal set
{e1, e2, ..., en}, is equivalent to the standard (n-1)-norm ||., ..., .||S . Precisely, we
have for all x1, x2, ..., xn−1

||x1, x2, ..., xn−1||∞ ≤ ||x1, x2, ..., xn−1||S ≤
√

n||x1, x2, ..., xn−1||∞,

where ||x1, x2, ..., xn−1||∞ = max{||x1, x2, ..., xn−1, ei|| : i = 1, 2, ..., n}.
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An Orlicz function is a function M :[0, ∞) → [0, ∞), which is continuous, non-
decreasing and convex with M(0)=0, M(x) > 0 and M(x) →∞ as x →∞.

Lindenstrauss and Tzafriri [10] used the Orlicz function and introduced the
sequence space `M as follows:

`M = {(xk) ∈ w :
∞∑

k=1

M(
|xk|
ρ

) < ∞, for some ρ > 0}.

They proved that `M is a Banach space normed by

||(xk)|| = inf{ρ > 0 :
∞∑

k=1

M(
|xk|
ρ

) ≤ 1}.

Remark 1. An Orlicz function satisfies the inequality M(λx) < λM(x) for all λ
with 0 < λ < 1.

The following inequality will be used throughout the article. Let p = (pk) be
a positive sequence of real numbers with 0 < pk ≤suppk = G, D=max{1, 2G−1}.
Then for all ak, bk∈ C for all k ∈ N , we have

(1) |ak + bk|pk ≤ D(|ak|pk + |bk|pk).

Let (X, ‖., ..., .‖) be a real n-normed space and w(n − X) denotes the space
of X-valued sequences. Let p = (pk) be any bounded sequence of positive real
numbers. Then for an Orlicz function M , we define the following sequence spaces

(M,∆s
r, p, ||., ..., .||)0

=
{

x = (xk) ∈ w(n−X) : lim
k→∞

[
M(‖∆s

rxk

ρ
, z1, ..., zn−1||)

]pk

= 0,

z1, ..., zn−1 ∈ X and for some ρ > 0
}

,

(M,∆s
r, p, ||., ..., .||)1

=
{

x = (xk) ∈ w(n−X) : lim
k→∞

[
M(||∆

s
rxk − L

ρ
, z1, ..., zn−1||)

]pk

= 0,

z1, ..., zn−1 ∈ X and for some ρ > 0 and L ∈ X
}

,

and

(M,∆s
r, p, ||., ..., .||)∞

=
{

x = (xk) ∈ w(n−X) : sup
k≥1

[
M(||∆

s
rxk

ρ
, z1, ..., zn−1||)

]pk

< ∞,

z1, ..., zn−1 ∈ X and for some ρ > 0
}

.
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If we replace the difference operator ∆s
r by ∆(s)

r in the above definitions, we will
get the spaces (M,∆(s)

r , p, ||., ..., .||)0, (M,∆(s)
r , p, ||., ..., .||)1 and (M,∆(s)

r , p, ||., ..., .||)∞
respectively.

For s = 0, we write the above spaces as (M,p, ||., ..., .||)0, (M,p, ||., ..., .||)1 and
(M,p, ||., ..., .||)∞ respectively.

It is clear from the definition that (M,∆s
r, p, ||., ..., .||)0 ⊂ (M,∆s

r, p, ||., ..., .||)1.
Further (M,∆s

r, p, ||., ..., .||)1 ⊂ (M,∆s
r, p, ||., ..., .||)∞ follows from eq(1) and the

following inequality:[
M(||∆

s
rxk

2ρ
, z1, ..., zn−1||)

]pk

≤
[
1
2
M(||∆

s
rxk − L

ρ
, z1, ..., zn−1||)+

1
2
M(

L

ρ
, z1, ..., zn−1||)

]pk

.

Similarly, we have

(M,∆(s)
r , p, ||., ..., .||)0 ⊂ (M,∆(s)

r , p, ||., ..., .||)1 ⊂ (M,∆(s)
r , p, ||., ..., .||)∞.

2. Main results

In this section we investigate some linear topological structures of the spaces
(M,∆s

r, p, ||., ..., .||)0, (M,∆s
r, p, ||., ..., .||)1, (M,∆s

r, p, ||., ..., .||)∞, (M,∆(s)
r , p, ||., ..., .||)0,

(M,∆(s)
r , p, ||., ..., .||)1 and (M,∆(s)

r , p, ||., ..., .||)∞.

Theorem 1. If {∆s
rxk, z1, z2, ..., zn−1} is a linearly dependent set in (X, ||., ..., .||)

for all but finite k, where x = (xk) ∈ w(n−X) and inf
k

pk > 0, then

(i) lim
k→∞

[
M(||∆

s
rxk

ρ , z1, ..., zn−1||)
]pk

= 0, for every ρ > 0,

(ii) sup
k≥1

[
M(||∆

s
rxk

ρ , z1, ..., zn−1||)
]pk

< ∞, for every ρ > 0.

Proof. (i) Assume that {∆s
rxk, z1, z2, ..., zn−1} is linearly dependent set in X for all

but finite k. Then we have ||∆s
rxk, z1, ..., zn−1|| → 0 as k →∞.

Since M is continuous and 0 < pk ≤ sup pk < ∞, for each k, we have

lim
k→∞

[
M(||∆

s
rxk

ρ
, z1, ..., zn−1||)

]pk

= 0, for every ρ > 0.

(ii) Proof of this part is similar to part (i). 2

Note. Theorem 1 will hold good if we replace the difference operator ∆s
r by the

difference operator ∆(s)
r .

Theorem 2. The classes of sequences (M,∆s
r, p, ||., ..., .||)0, (M,∆s

r, p, ||., ..., .||)1,
(M,∆s

r, p, ||., ..., .||)∞, (M,∆(s)
r , p, ||., ..., .||)0, (M,∆(s)

r , p, ||., ..., .||)1 and

(M,∆(s)
r , p, ||., ..., .||)∞ are linear spaces.
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Proof. We proof the result for the space (M,∆(s)
r , p, ||., ..., .||)∞ only and for other

spaces it will follow on applying similar arguments.
Let (xk) and (yk) be any two elements of the space (M,∆(s)

r , p, ||., ..., .||)∞. Then
there exist ρ1 and ρ2 > 0 such that[

M(||∆
(s)
r xk

ρ1
, z1, ..., zn−1||)

]pk

< ∞

and [
M(||∆

(s)
r yk

ρ2
, z1, ..., zn−1||)

]pk

< ∞,

for all k ≥ 1. Let α, β be any scalars and let ρ3=max(2|α|ρ1, 2|β|ρ2).
Then we have[

M(||∆
(s)
r (αxk + βyk)

ρ3
, z1, ..., zn−1||)

]pk

≤

[
M(||∆

(s)
r αxk

ρ3
, z1, ..., zn−1||) + M(||∆

(s)
r βyk

ρ3
, z1, ..., zn−1||)

]pk

≤ D

{[
M(||∆

(s)
r xk

ρ1
, z1, ..., zn−1||)

]pk

+

[
M(||∆

(s)
r yk

ρ2
, z1, ..., zn−1||)

]pk
}

< ∞

for all k ≥ 1. Hence (M,∆(s)
r , p, ||., ..., .||)∞ is a linear space. 2

Theorem 3. The spaces (M,∆s
r,p,||.,...,.||)0, (M,∆s

r,p,||.,...,.||)1 and (M,∆s
r,p,||.,...,.||)∞

are paranormed spaces paranormed by g defined by

(2) g(x) =
rs∑

k=1

||xk, z1, ..., zn−1||+inf
{

ρ
pk
H : sup

k
M

(
||∆

s
rxk

ρ
, z1, ..., zn−1||

)
≤ 1
}

,

where H=max(1, sup
k

pk).

Proof. Clearly g(x) = g(−x) and g(θ) = 0. Let (xk) and (yk) be any two se-
quences belong to any one of the spaces (M,∆s

r, p, ||., ..., .||)0, (M,∆s
r, p, ||., ..., .||)1,

and (M,∆s
r, p, ||., ..., .||)∞. Then we have ρ1, ρ2 > 0 such that

sup
k

M

(
||∆

s
rxk

ρ1
, z1, ..., zn−1||

)
≤ 1 and sup

k
M

(
||∆

s
ryk

ρ2
, z1, ..., zn−1||

)
≤ 1.

Let ρ = ρ1 + ρ2. Then by the convexity of M , we have

sup
k

M

(
||∆

s
r(xk + yk)

ρ
, z1, ..., zn−1||

)
≤
(

ρ1

ρ1+ρ2

)
sup

k
M

(
||∆

s
rxk

ρ1
, z1, ..., zn−1||

)
+
(

ρ2

ρ1+ρ2

)
sup

k
M

(
||∆

s
ryk

ρ2
, z1, ..., zn−1||

)
≤ 1.
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Hence we have

g(x+y)=
rs∑

k=1

||xk+yk, z1, ..., zn−1||+inf
{
ρ

pk
H : sup

k
M(||∆

s
r(xk + yk)

ρ
, z1, ..., zn−1||)≤1

}

≤
rs∑

k=1

||xk, z1, ..., zn−1||+ inf
{

ρ
pk
H
1 : sup

k
M(||∆

s
rxk

ρ1
, z1, ..., zn−1||) ≤ 1

}

+
rs∑

k=1

||yk, z1, ..., zn−1||+ inf
{

ρ
pk
H
2 : sup

k
M(||∆

s
ryk

ρ2
, z1, ..., zn−1||) ≤ 1

}
.

This implies
g(x + y) ≤ g(x) + g(y).

The continuity of the scalar multiplication follows from the following equality:

g(λx)=
rs∑

k=1

||λxk, z1, ..., zn−1||+inf{ρ
pk
H : sup

k
M(||∆

s
rλxk

ρ
, z1, ..., zn−1||)≤1}

= |λ|
rs∑

k=1

‖xk, z1, ..., zn−1‖+inf{(t|λ|)
pk
H : sup

k
M(‖∆s

rxk

t
, z1, ..., zn−1‖)≤1},

where t = ρ
|λ| . 2

In view of the above result we state the following result without proof.

Theorem 4. The spaces (M,∆(s)
r , p, ||., ..., .||)0, (M,∆(s)

r , p, ||., ..., .||)1 and

(M,∆(s)
r , p, ||., ..., .||)∞ are paranormed spaces paranormed by h defined by

(3) h(x) = inf

{
ρ

pk
H : sup

k
M(||∆

(s)
r xk

ρ
, z1, ..., zn−1||) ≤ 1

}
,

where H = max(1, sup
k

pk).

Theorem 5. Let (X.||., ..., .||) be an n-Banach space. Then (M,∆s
r, p, ||., ..., .||)0,

(M,∆s
r, p, ||., ..., .||)1 and (M,∆s

r, p, ||., ..., .||)∞ are complete paranormed spaces
paranormed by g as defined by eq(2).

Proof. We consider only (M,∆s
r, p, ||., ..., .||)∞ and for other spaces it will follow on

applying similar arguments.
Let (xi) be any Cauchy sequence in (M,∆s

r, p, ‖., ..., .‖)∞. Let x0 > 0 be fixed
and t > 0 be such that for a given ε (0 < ε < 1), ε

x0t > 0, and x0t ≥ 1. Then there
exists a positive integer n0 such that

g(xi − xj) <
ε

x0t
, for all i, j ≥ n0.
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Using the definition of paranorm, we get

rs∑
k=1

||xi
k−xj

k, z1, ..., zn−1||+inf{ρ
pk
H : sup

k
M(||

∆s
r(x

i
k − xj

k)
ρ

, z1, ..., zn−1||)≤1}

<
ε

x0t
, for all i, j ≥ n0.

(4)

Hence we have

rs∑
k=1

||xi
k − xj

k, z1, ..., zn−1|| < ε, for all i, j ≥ n0.

This implies that

||xi
k − xj

k, z1, ..., zn−1|| < ε, for all i, j ≥ n0 and 1 ≤ k ≤ rs.

Hence (xi
k) is a Cauchy sequence in X for k = 1, 2, ..., rs.

Thus (xi
k) is convergent in X for k = 1, 2, ..., rs.

For simplicity, let

(5) lim
i→∞

xi
k = xk, say for k = 1, 2, ..., rs.

Again from eq(4), we have

inf{ρ
pk
H : sup

k
M(||

∆s
r(x

i
k − xj

k)
ρ

, z1, ..., zn−1||) ≤ 1} < ε, for all i, j ≥ n0.

Then we get

sup
k

M(||
∆s

r(x
i
k − xj

k)
g(xi − xj)

, z1, ..., zn−1||) ≤ 1, for all i, j ≥ n0.

It follows that

M(||
∆s

r(x
i
k − xj

k)
g(xi − xj)

, z1, ..., zn−1||) ≤ 1, for each k ≥ 1 and for all i, j ≥ n0.

For t > 0 with M( tx0
2 ) ≥ 1, we have

M

(
||

∆s
r(x

i
k − xj

k)
g(xi − xj)

, z1, ..., zn−1||

)
≤ M

(
tx0

2

)
.

Then we have
||∆s

r(x
i
k − xj

k), z1, ..., zn−1|| ≤
tx0

2
.

ε

tx0
=

ε

2
.
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Hence (∆s
rx

i
k) is a Cauchy sequence in X for all k ∈ N .

This implies that (∆s
rx

i
k) is convergent in X for all k ∈ N . Let lim

i→∞
(∆s

rx
i
k) = yk

exist for each k ∈ N .
Let k = 1. Then we have

(6) lim
i→∞

(∆s
rx

i
1) = lim

i→∞

s∑
v=0

(−1)v

(
s
v

)
xi

1+rv = y1

We have that by eq(5) and eq(6)

lim
i→∞

xi
rs+1 = xrs+1 exists.

Proceeding in this way inductively, we have lim
i→∞

xi
k = xk exists for each k ∈ N.

Now we have for all i, j ≥ n0,
rs∑

k=1

||xi
k−xj

k, z1, ..., zn−1||+ inf{ρ
pk
H : sup

k
M(||

∆s
r(x

i
k − xj

k)
ρ

, z1, ..., zn−1||)≤1}<ε

This implies that

lim
j→∞

{ rs∑
k=1

||xi
k−xj

k,z1,...,zn−1||+inf{ρ
pk
H : sup

k
M(||

∆s
r(x

i
k−xj

k)
ρ

,z1,...,zn−1||)≤1}
}

< ε, for all i ≥ n0.

Since M and n-norms are continuous functions, we have
rs∑

k=1

||xi
k−xk,z1,...,zn−1||+inf{ρ

pk
H : sup

k
M(||∆

s
r(x

i
k−xk)
ρ

,z1,...,zn−1||)≤1}<ε,

for all i ≥ n0.
It follows that (xi − x) ∈ (M,∆s

r, p, ||., ..., .||)∞ and (M,∆s
r, p, ||., ..., .||)∞ is a linear

space, so we have x = xi − (xi − x) ∈ (M,∆s
r, p, ||., ..., .||)∞.

This completes the proof of the Theorem. 2

In view of Theorem 5, we state the following result without proof.

Theorem 6. Let (X.||., ..., .||) be an n-Banach space. Then (M,∆(s)
r , p, ||., ..., .||)0,

(M,∆(s)
r , p, ||., ..., .||)1 and (M,∆(s)

r , p, ||., ..., .||)∞ are complete paranormed spaces
paranormed by h as defined by eq(3).

Remark. It is obvious that (xk) ∈ (M,∆s
r, p, ||., ..., .||)Y if and only if (xk) ∈

(M,∆(s)
r , p, ||., ..., .||)Y , for Y = 0, 1 and ∞. Also it is clear that paranorms g and h

are equivalent. Hence we state the following Corollary.

Corollary 7. Let (X.||., ..., .||) be an n-Banach space. Then
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(i) (M,∆s
r, p, ||., ..., .||)0, (M,∆s

r, p, ||., ..., .||)1 and (M,∆s
r, p, ||., ..., .||)∞ are com-

plete paranormed spaces paranormed by h, given by eq(3).

(ii) (M,∆(s)
r , p, ||., ..., .||)0, (M,∆(s)

r , p, ||., ..., .||)1 and (M,∆(s)
r , p, ||., ..., .||)∞ are

complete paranormed spaces paranormed by g, given by eq(2).

Remark. In view of Lemma 1, we can replace the phrase“x is an n-Banach space”
by“X is a Banach space” in Theorem 2.5, Theorem 2.6 and Corollary 2.7 if X is
assumed to be equipped with standard n-norm.

We state the following Theorem in view of Lemma 2.

Theorem 8. Let X be a standard n-norm space and {e1, e2, ..., en} be an orthonor-
mal set in X. Then

(M,∆s
r, p, ||., ..., .||∞)0 = (M,∆s

r, p, ||., ..., .||(n−1))0,
(M,∆s

r, p, ||., ..., .||∞)1 = (M,∆s
r, p, ||., ..., .||(n−1))1

and
(M,∆s

r, p, ||., ..., .||∞)∞ = (M,∆s
r, p, ||., ..., .||(n−1))∞,

where ||., ..., .||∞ is the derived (n − 1)-norm defined with respect to {e1, e2, ..., en}
and ||., ..., .||(n−1) is the standard (n− 1)-norm on X.

Note 2. Theorem 8 holds good if we replace the difference operator ∆s
r by the

difference operator ∆(s)
r .

Theorem 9. (i) The spaces S[(M,∆s
r, p, ||., ..., .||)Y ] and (M,p, ||., ..., .||)Y are equiv-

alent as topological spaces, where S[(M,∆s
r, p, ||., ..., .||)Y ] = {x = (xk) : x ∈

(M,∆s
r, p, ||., ..., .||)Y , x1 = ... = xrs = 0} is a subspace of (M,∆s

r, p, ||., ..., .||)Y ,
for Y = 0, 1 and ∞.
(ii) The spaces (M,∆(s)

r , p, ||., ..., .||)Y and (M,p, ||., ..., .||)Y are equivalent as topo-
logical spaces, for Y = 0, 1 and ∞.

Proof. (i) Let us consider the mapping
T : S[(M,∆s

r, p, ||., ..., .||)Y ] −→ (M,p, ||., ..., .||)Y defined by

Tx = (∆s
rxk), for every x ∈ S[(M,∆s

r, p, ||., ..., .||)Y ].

Then clearly T is a linear homeomorphism and the proof follows.
(ii) In this case we consider a mapping T ′ : (M,∆(s)

r , p, ||., ..., .||)Y −→
(M,p, ||., ..., .||)Y defined by

T ′x = (∆(s)
r xk), for every x ∈ (M,∆(s)

r , p, ||., ..., .||)Y

Then clearly T ′ is a linear homeomorphism and the proof follows. 2
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