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Abstract. We study the global asymptotic stability, the character of the semicycles, the
periodic nature and oscillation of the positive solutions of the difference equation

xn+1 =
p + xn−k

q + xn
+

xn−k

xn
, n = 0, 1, 2, · · · .

where p, q ∈ (0,∞), q 6= 2, k ∈ {1, 2, · · · } and the initial values x−k, · · · , x0 are arbitrary

positive real numbers.

1. Introduction

During the last ten years there has been a fascination with discovering nonlinear
difference equations of order greater than one. Such equations also appear naturally
as discrete analogues and as numerical solutions of differential and delay differential
equations which model various diverse phenomena in biology, ecology, physiology,
physics, engineering and economics. Some nonlinear difference equations, especially
the boundedness, global attractivity, oscillatory and some other properties of second
order nonlinear difference equations have been investigated by many authors, see
[1-6]. In particular, A. M. Amleh et al. [1] studied the global stability, the periodic
character of solutions of the equation:

xn+1 = α+
xn−1

xn
, n = 0, 1, 2, · · · .

where α ∈ [0,∞) and the initial values x−1, x0 are arbitrary positive real numbers.
H. M. E. Owaidy et al. [5] investigated the following equation:

xn+1 = α+
xn−k

xn
, n = 0, 1, 2, · · · .

where α ∈ [1,∞), k ∈ {1, 2, · · · } and the initial values x−k, · · · , x0 are arbitrary
positive real numbers.
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Later, M. Saleh et al. [9] mainly studied the character of the semicycles, the
asymptotic stability of solutions of the equation:

yn+1 = A+
yn−k

yn
, n = 0, 1, 2, · · · .

where A ∈ (0,∞), k ∈ {2, 3, · · · } and the initial values x−1, x0 are arbitrary positive
real numbers.

Recently, S. Ozen, et al. [8] studied the global stability, the periodic nature and
the persistence of solutions of the equation:

xn+1 =
α+ xn−1

β + xn
+
xn−1

xn
, n = 0, 1, 2, · · · .

where α, β ∈ (0,∞), α 6= β, β 6= 2 and the initial values x−1, x0 are arbitrary
positive real numbers.

Motivated by the previous works, this paper addresses the difference equation:

(1) xn+1 =
p+ xn−k

q + xn
+
xn−k

xn
, n = 0, 1, 2, · · · .

where p, q ∈ (0,∞), q 6= 2, k ∈ {1, 2, · · · } and the initial values x−k, · · · , x0 are
arbitrary positive real numbers.

We first recall some results which will be useful in the sequel.

Lemma 1.1([4]). Assume that a, b ∈ R, k ∈ {1, 2, · · · }. Then

(2) |a|+ |b| < 1.

is a sufficient condition for asymptotic stability of the equation

(3) xn+1 − axn + bxn−k = 0, n = 0, 1, · · · .

Suppose in addition that one of the following two cases hold.
(a) k odd and b < 0.
(b) k even and ab < 0.

Then (2) is also a necessary condition for the asymptotic stability of Eq.(3).

Lemma 1.2([4]). Consider the difference equation

(4) xn+1 = f(xn, xn−k), n = 0, 1, 2, · · · .

where k ∈ {1, 2, · · · }. Let I = [a, b] be some interval of real numbers and assume
that

f : [a, b]× [a, b] → [a, b].

is a continuous function which satisfies the following properties:
(a) f(x, y) nonincreasing in x and nondecreasing in y;
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(b) If (m,M) is the solution of the system

f(m,M) = m, f(M,m) = M

then m = M .
Then the Eq.(4) has a unique positive equilibrium x̄ and every solution converges to
x̄.

2. Local asymptotic stability

Let x̄ be the positive equilibrium of Eq.(1). Consider the function f(x, y) =
(p+ y)/(q + x) + y/x. The equilibrium points are solutions of the equation

x̄2 + (q − 2)x̄− (p+ q) = 0.

So the unique positive equilibrium point of Eq.(1) is

x̄ =
−(q − 2) +

√
(q − 2)2 + 4(p+ q)

2
.

The linearized equation associated with Eq.(1) about equilibrium x̄ is

(5) yn+1 +
x̄2 + q

x̄(q + x̄)
yn −

2x̄+ q

x̄(q + x̄)
yn−k = 0, n = 0, 1, 2, · · · .

Hence its characteristic equation is

λk+1 +
x̄2 + q

x̄(q + x̄)
λk − 2x̄+ q

x̄(q + x̄)
= 0, n = 0, 1, 2, · · · .

By x̄ = f(x̄, x̄), we obtain

(q + x̄)(x̄− 1) = p+ x̄.

So the positive equilibrium x̄ satisfies x̄ > 1.

From here we obtain the following result.

Theorem 2.1. Let x̄ be the positive equilibrium point of Eq.(1), then the following
statements are true:

(a) Suppose that p ≥ q. Then 2 ≤ x̄ ≤ p/q + 1.
(b) Suppose that p < q. Than p/q + 1 < x̄ < 2.

Proof. Since x̄ be the positive equilibrium point of Eq.(1), we have x̄ = f(x̄, x̄),
thus

x̄ =
p+ x̄

q + x̄
+ 1.
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Suppose that p ≥ q, then

2 ≤ x̄ ≤ p/q + 1.

Suppose that p < q, then

x̄ =
−(q − 2) +

√
(q − 2)2 + 4(p+ q)

2
<
−(q − 2) +

√
(q + 2)2

2
< 2.

Thus
p

q
+ 1 < x̄ < 2.

The proof is complete. 2

Theorem 2.2. Assume that p, q ∈ R and k ∈ {0, 1, · · · }. Then

(6) q > 2 and p > 4q2/(q − 2)2 + q

is a sufficient condition that the positive equilibrium x̄ of eq.(1) is locally asymptoti-
cally stable. Suppose in addition that k is odd, then (6) is also a necessary condition
for locally asymptotic stability of eq.(1).

Proof. From (5), we have

|a|+ |b| = | − x̄2 + q

x̄(q + x̄)
|+ | − 2x̄+ q

x̄(q + x̄)
|.

where x̄2 + q > 0, x̄(q + x̄) > 0, 2x̄+ q > 0.
By |a|+ |b| < 1, we get

x̄2 + q

x̄(q + x̄)
+

2x̄+ q

x̄(q + x̄)
< 1.

and easy computations give
2q < (q − 2)x̄.

Observe that x̄ =
(
−(q − 2) +

√
(q − 2)2 + 4(p+ q)

)
/2, we obtain

2q < (q − 2)
−(q − 2) +

√
(q − 2)2 + 4(p+ q)

2
.

so
q(q − 2)2 + 4q2 < p(q − 2)2.

which implies that

p >
4q2

(q − 2)2
+ q.

Since b = −(2x̄ + q)/(x̄(q + x̄)) < 0, by Lemma 1, it is easy to see that p >
4q2/(q − 2)2 + q is necessary. 2
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3. Periodic nature

In this section, we will discuss the periodic nature of the positive solutions of
Eq.(1).

Theorem 3.1. (1) If k is even, then Eq.(1) has no period 2 solutions.
(2) If k is odd, and q > 2, p ≥ 4q2/(q−2)2+q, then Eq.(1) has period 2 solutions.

Proof. (1) If k is even, let

· · · , ϕ, ψ, ϕ, ψ, · · · , ϕ, ψ, · · ·

be a period 2 solution of Eq.(1), then

ϕ =
p+ ψ

q + ψ
+ 1(7)

ψ =
p+ ϕ

q + ϕ
+ 1.(8)

Thus

qϕ+ ϕψ = p+ q + 2ψ,
qψ + ϕψ = p+ q + 2ϕ.

Subtracting the relations above, we have

(ϕ− ψ)(q + 2) = 0.

It is easy to see that ϕ = ψ if q+2 > 0, which is a contradiction. So if k is even
then Eq.(1) has no period 2 solutions.

(2) If k is odd, let
· · · , ϕ, ψ, ϕ, ψ, · · · , ϕ, ψ, · · ·

be a period 2 solution of Eq.(1), then

ϕ =
p+ ϕ

q + ψ
+
ϕ

ψ
(9)

ψ =
p+ ψ

q + ϕ
+
ψ

ϕ
.(10)

Thus

qϕψ + ϕψ2 = pψ + qϕ+ 2ϕψ.(11)

qϕψ + ϕ2ψ = pϕ+ qψ + 2ϕψ.
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Subtracting the relations above, we have

(ψ − ϕ)(ϕψ + q − p) = 0.

so ϕψ = p− q > 0, hence ψ = (p− q)/ϕ.
From (11), we get

qϕ2 +A(2− q)ϕ+Aq = 0.

where A = p− q > 0.
And

ϕ =
A(q − 2)±A

√
(q − 2)2 − 4q2/A
2q

.

We proceed by treating three possible cases, respectively.
Case 1: (q−2)2−4q2/A < 0. We have q < p < 4q2/(q−2)2 +q, it is impossible,

hence Eq.(1) has no period 2 solutions.
Case 2: (q − 2)2 − 4q2/A ≥ 0. We have p ≥ 4q2/(q − 2)2 + q, in addition that

q > 2, then Eq.(1) has period 2 solutions, which must be of the form

· · · ,
A(q − 2) +A

√
(q − 2)2 − 4q2/A
2q

,
A(q − 2)−A

√
(q − 2)2 − 4q2/A
2q

, · · ·

Case 3: q < 2.
Since A(q − 2) < 0, we have ϕ =

(
A(q − 2)±A

√
(q − 2)2 − 4q2/A

)
/(2q) < 0,

which is a contradiction.
The proof is complete. 2

4. Semicycle analysis and global asymptotic stability

The method of semicycles analysis is very useful in consideration of positive solu-
tions. So in this section, we will analyze the character of the semicycles.

Theorem 4.1. (1) Suppose k is odd, either

(12) x−k, x2−k, · · · , x−1 < x̄, x1−k, x3−k, · · · , x0 > x̄

or

(13) x−k, x2−k, · · · , x−1 > x̄, x1−k, x3−k, · · · , x0 < x̄.

Then every solution {xn}∞n=−k of Eq.(1) strictly oscillates about x̄, and has semi-
cycles of length one.

(2) Let p 6= q, if the solutions of Eq.(1) have only one semicycle, then every
solution of Eq.(1) converges to the positive equilibrium x̄, which means x̄ is a global
attractor.

Proof. (1) We consider only the case (12), the other case is similar and will be
omitted.
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We complete the proof by induction. Firstly, we notice that

x1 = f(x0, x−k) < f(x̄, x̄) = x̄,

x2 = f(x1, x1−k) > f(x̄, x̄) = x̄.

where the function f(x, y) decreases in x and increases in y.
If there exists some integer N > 0, such that x2n−1 < x̄, x2n > x̄ if n < N ,

then

x2N−1 = f(x2N−2 , x2N−2−k
) < f(x̄, x̄) = x̄,

x2N
= f(x2N−1 , x2N−1−k

) > f(x̄, x̄) = x̄.

By induction, we have completed the proof.
(2) We consider only the case of positive semicycle, the one of the negative

semicycle is similar and is omitted.
Suppose the solution of Eq.(1) has only one positive semicycle, i.e. for any

n ≥ −k, xn ≥ x̄. We will complete the proof in two cases:

Case 1: p < q.
By Theorem 2.1, if p < q, then p/q + 1 < x̄ < 2. Set I = [ 1 + p/q,∞), then

xn ∈ I if n ≥ −k. Consider the function f(x, y) = (p+y)/(q+x)+y/x, it decreases
in x and increases in y.

By Theorem 3.1, if p < q, then for any k, Eq.(1) has no period 2 solutions, which
implies that if (m,M) is a solution of the system f(m,M) = m, f(M,m) = M , we
have m = M .

By Lemma 1.2, Eq.(1) has a unique positive equilibrium x̄, and every solution
converges to x̄.

This completes the proof.

Case 2: p > q.
Firstly, we will prove xn−k ≥ xn. For the sake of contradiction, consider

xn+1 =
p+ xn−k

q + xn
+
xn−k

xn
≥ x̄.

Because of the monotonicity of the function f(x, y), we have

f(x̄, x̄) = x̄ ≤ xn+1 = f(xn, xn−k) < f(xn, xn).

When p > q, the function f(x, x) is decreasing. From the inequality f(x̄, x̄) <
f(xn, xn), we have x̄ > xn, which is a contradiction.

Consider the subsequences of {xi+kt}∞t=−1, where i ∈ {0, 1, · · · , k − 1}. Then
every subsequence is decreasing and bounded from below, so there exists some
constant Li, such that

lim
t→∞

xi+kt = Li ≥ x̄, for any i ∈ {0, 1, · · · , k − 1}.
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Next, we will prove Li = Lj for i 6= j. Taking limits on both sides of Eq.(1),
we obtain

L0 =
p+ Lk−1

q + Lk−1
+ 1,

L1 =
p+ L0

q + L0
+ 1,

...
...

Lk−1 =
p+ Lk−2

q + Lk−2
+ 1.

so
L0 = L1 = · · · = Lk−1 = x̄.

Thus every subsequence {xi+kt}∞t=−1 converges to x̄, hence the solution
{xn}∞n=−k converges to x̄, which means x̄ is a global attractor.

This completes the proof. 2

Especially, if k = 1, Eq.(1) is changed into the one in Ozen [8].

(14) xn+1 =
p+ xn−1

q + xn
+
xn−1

xn
, n = 0, 1, 2, · · · .

Corollary 4.2. (1) If Eq.(14) has only one semicycle, then the positive equilibrium x̄
is a global attractor; moreover, when p > 4q2/(q−2)2+q, x̄ is globally asymptotically
stable;

(2) If the initial values of Eq.(14) satisfy the condition x−1 < x̄ < x0, then
x2k−1 < x̄ < x2k, for any k ∈ {0, 1, 2, · · · };

(3) If the initial values of Eq.(14) satisfy the condition x−1 > x̄ > x0, then
x2k−1 > x̄ > x2k, for any k ∈ {0, 1, 2, · · · };

(4) If Eq.(14) has at least two semicycles, then the solution {xn}∞n=−1 oscillates,
moreover, except the first semicycle, every semicycle has length of one.

For the global asymptotic stability, we have the following theorem.

Theorem 4.3. When p > 4q2/(q − 2)2 + q, if Eq.(1) has only one semicycle, then
the unique positive equilibrium x̄ is globally asymptotically stable.

Proof. By Theorem 2.2, when p > 4q2/(q − 2)2 + q, the positive equilibrium x̄
is locally asymptotically stable. By Theorem 4.1, when p 6= q, if Eq.(1) has only
one semicycle, the positive equilibrium x̄ is a global attractor. This means when
p > 4q2/(q − 2)2 + q, if Eq.(1) has only one semicycle, then the unique positive
equilibrium x̄ is globally asymptotically stable.

This completes the proof. 2
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5. Question and Discussions

Question: If Eq.(1) has more than one semicycle, under what condition is
the positive equilibrium a global attractor? Moreover, under what condition is the
positive equilibrium globally asymptotically stable?

Discussion 1: Firstly, let k = 1 in Eq.(1), then we the following result by
computation.

If the initial values strictly oscillate about the positive equilibrium, then the
solutions strictly oscillate, which shows the positive equilibrium is not a global
attractor. So we can present a conjecture as follows:

Conjecture: If the initial values of Eq.(1) strictly oscillate, then the solutions
strictly oscillate, and have two different cases: either, the odd subsequence converges
to 0, and the even subsequence converges to ∞; or, the odd subsequence converges
to ∞, and the even subsequence converges to 0.

Here is some date when k = 1, which is concerned with Eq.(14):

Case 1: p = 3, q = 1, 2.5 < x̄ < 3, set x−1 = 2, x0 = 4, which satisfy
4q2/(q − 2)2 + q > p > q, x−1 < x̄ < x0.

The following date shows that the odd subsequence converges to 0, and the even
subsequence converges to ∞.

x1 :1.5 x2 :5.46667 x3 :0.970267 x4 :9.93141
x5 :0.460895 x6 :30.3998 x7 :0.125381 x8 :272.137
x9 :0.0119033 x10 :23134.3 x11 :0.000130701 x12 :1.77026e+ 008
x13 :1.69482e− 008 x14 :1.04451e+ 016 x15 :2.87216e− 016 x16 :3.63668e+ 031
x17 :8.24929e− 032 x18 :4.40847e+ 062 x19 :6.80508e− 063 x20 :6.4782e+ 124
...

...
...

...
x33 :0 x34 :∞ x35 :0 x36 :∞
x37 :0 x38 :∞ x39 :0 x40 :∞
...

...
...

...
...

...
...

...

Case 2: p = 2, q = 3, 1.5 < x̄ < 2, set x−1 = 1, x0 = 3, which satisfy
q > p, x−1 < x̄ < x0.

The following date shows that the odd subsequence converges to 0, and the even
subsequence converges to ∞.
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x1 :0.833333 x2 :4.90435 x3 :0.52837 x4 :11.2388
x5 :0.224581 x6 :54.1492 x7 :0.0430733 x8 :1275.59
x9 :0.00163168 x10 :782192 x11 :2.56108e− 006 x12 :3.05415e+ 011
x13 :6.54848e− 012 x14 :4.66391e+ 022 x15 :4.28825e− 023 x16 :1.0876e+ 045
x17 :1.83891e− 045 x18 :5.9144e+ 089 x19 :3.38158e− 090 x20 :1.74901e+ 179
x21 :1.14351e− 179 x22 :∞ x23 :0 x24 :∞
x25 :0 x26 :∞ x27 :0 x28 :∞
...

...
...

...
...

...
...

...

Case 3: p = 40, q = 3, 6 < x̄ < 6.5, set x−1 = 3, x0 = 8, which satisfy
p ≥ 4q2/(q − 2)2 + q, x−1 < x̄ < x0.

The following date shows that the odd subsequence converges to 0, and the even
subsequence converges to ∞.

x1 : 4.28409 x2 : 8.45708 x3 : 4.37179 x4 : 8.50778
x5 : 4.36966 x6 : 8.5291 x7 : 4.36082 x8 : 8.54874
x9 : 4.35129 x10 : 8.56875 x11 : 4.34152 x12 : 8.5893
x13 : 4.33153 x14 : 8.61041 x15 : 4.32131 x16 : 8.63212
x17 : 4.31086 x18 : 8.65445 x19 : 4.30016 x20 : 8.67743
x21 : 4.28922 x22 : 8.70109 x23 : 4.278 x24 : 8.72546
...

...
...

...
x61 : 3.99676 x62 : 9.38889 x63 : 3.977 x64 : 9.43962
x65 : 3.95655 x66 : 9.49274 x67 : 3.93536 x68 : 9.54845
x69 : 3.9134 x70 : 9.60695 x71 : 3.89062 x72 : 9.66846
...

...
...

...
x181 : 0 x182 : ∞ x183 : 0 x184 : ∞
x185 : 0 x186 : ∞ x187 : 0 x188 : ∞
...

...
...

...
...

...
...

...

In the three cases above, if x−1 > x̄ > x0, we also have similar results, that is :
either the odd subsequence converges to 0, and the even subsequence converges to
∞; or the odd subsequence converges to ∞, and the even subsequence converges to
0. The related date is omitted in here.

Discussion 2: We will discuss Eq.(1) in the case that the initial values lie in
the same way about the positive equilibrium, at the same time, Eq.(1) has more
than one semicycle.

Firstly, we take k = 1 in Eq.(1) to investigate Eq.(14), and have a result by
computation.
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When p > 4q2/(q−2)2+q, x−1 > x0 > x̄, or p > 4q2/(q−2)2+q, x−1 < x0 < x̄,
then the positive equilibrium x̄ is a global attractor.

So, we have the conjecture as follows:

Conjecture: When p > 4q2/(q − 2)2 + q, x−k > · · · > x0 > x̄, or p >
4q2/(q − 2)2 + q, x−k < · · · < x0 < x̄, then the positive equilibrium x̄ is a global
attractor.

Here is some date when k = 1, which is concerned with Eq.(14):
Case 1: p = 40, q = 3, x̄ ≈ 6.07647, set x−1 = 2, x0 = 4, which satisfy

p > 4q2/(q − 2)2 + q, x−1 < x0 < x̄.

x1 : 6.5 x2 : 5.24696 x3 : 6.87725 x4 : 5.34387
x5 : 6.90511 x6 : 5.35173 x7 : 6.90647 x8 : 5.35288
x9 : 6.90584 x10 : 5.35352 x11 : 6.90506 x12 : 5.35413
x13 : 6.90427 x14 : 5.35473 x15 : 6.90348 x16 : 5.35533
x17 : 6.90268 x18 : 5.35594 x19 : 6.90188 x20 : 5.35655
x21 : 6.90108 x22 : 5.35716 x23 : 6.90029 x24 : 5.35777
...

...
...

...
...

...
...

...
x99901 : 6.07647 x99902 : 6.07647 x99903 : 6.07647 x99904 : 6.07647
x99905 : 6.07647 x99906 : 6.07647 x99907 : 6.07647 x99908 : 6.07647
x99909 : 6.07647 x99910 : 6.07647 x99911 : 6.07647 x99912 : 6.07647
x99913 : 6.07647 x99914 : 6.07647 x99915 : 6.07647 x99916 : 6.07647
...

...
...

...
...

...
...

...

However, if the initial values don’t satisfy x−1 < x0 < x̄, the positive equilibrium
x̄ is not a global attractor in spite of p > 4q2/(q−2)2+q. The related date is omitted
in here.

Case 2: p = 40, q = 3, x̄ ≈ 6.07647, set x−1 = 10, x0 = 8, which satisfy
p > 4q2/(q − 2)2 + q, x−1 > x0 > x̄.

This means, in the case p > 4q2/(q − 2)2 + q, x−1 > x0 > x̄, the positive
equilibrium x̄ is a global attractor. The related date is omitted in here.

However, if the initial values don’t satisfy x−1 > x0 > x̄, the positive equilibrium
x̄ is not a global attractor in spite of p > 4q2/(q−2)2+q. The related date is omitted
in here.

Case 3: when p < q, or q < p < 4q2/(q − 2)2 + q, the positive equilibrium x̄
is not a global attractor, no matter how the initial values lie about x̄. The related
date is omitted in here.
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