On Some Uniqueness Theorems of Meromorphic Functions Sharing Three Values

Arindam Sarkar* and Paulomi Chattopadhyay
Department of Mathematics, Sikkim Manipal Institute of Technology, East Sikkim737136, India
e-mail: arindam_ku@rediffmail.com
and paulomi.chattopadhyay@rediffmail.com

Abstract. We prove some uniqueness theorems of meromorphic functions sharing three values which improves some results of Banerjee.

1. Introduction, definitions and results

Let f and g be two nonconstant meromorphic functions defined in the open complex plane \mathbb{C}. If for some $a \in \mathbb{C} \cup\{\infty\}, f$ and g have the same set of a-points with same multiplicities, we say that f and g share the value $a \mathrm{CM}$ (Counting Multiplicities) and if we do not consider the multiplicities, then f and g are said to share the value a IM (Ignoring Multiplicities). We do not explain the standard notations and definitions of the value distribution theory as these are available in [6]. When we let r towards ∞ we will always assume that r may avoid a set I of finite linear measure, not necessarily the same every time in its approach to ∞.

Definition 1([2]). Let p be a positive integer and $a \in \mathbb{C} \cup\{\infty\}$. We denote by $\bar{N}(r, a ; f \mid=p)$ the counting function of those a-points of f whose multiplicities are excatly equal to p, where an a-point is counted only once.

Definition 2([7], [8]). Let p be a positive integer and $a \in \mathbb{C} \cup\{\infty\}$. We denote by $\bar{N}(r, a ; f \mid \geq p)$ the counting function of those a-points of f whose multiplicities are greater than or equal to p, where an a-point is counted only once.

Definition 3. Let f and g share a value a $I M$. Let z be an a-point of f and g with multiplicities $m_{f}(z)$ and $m_{g}(z)$ respectivily. Let p be a positive integer. We put $\gamma_{(p}(z)=1$ if both $m_{f}(z)>p$ and $m_{g}(z)>p$ and $\gamma_{(p}(z)=0$, otherwise.
Let

$$
\bar{n}(r, a ; f|>p, g|>p)=\sum_{|z| \leq r} \gamma_{(p}(z) .
$$

[^0]Clearly $\bar{n}(r, a ; f|>p, g|>p)=\bar{n}(r, a ; g|>p, f|>p)$. We denote by $\bar{N}(r, a ; f \mid>$ $p, g \mid>p)$ the integrated counting function obtained by from $\bar{n}(r, a ; f|>p, g|>p)$. Clearly $\bar{N}(r, a ; f|>p, g|>p)=\bar{N}(r, a ; g|>p, f|>p)$.

Definition 4([15]). Let f and g share the value 1 IM. Let z_{0} be a 1-point of f and g with multiplicities p and q respectivily. Let s be a positive integer. We denote by $\bar{N}_{f>s}(r, 1 ; g)$ the reduced counting function of those 1-points of f and g such that $p>q=s$. Similarly $\bar{N}_{f<s}(r, 1 ; g)$ will denote the reduced counting function of those 1-points of f and g where $p<q=s$.

Definition $5([7],[8])$. Let k be a nonnegative integer or infinity. For $a \in \mathbb{C} \cup\{\infty\}$ we denote by $E_{k}(a ; f)$ the set of all a-points of f where an a-point of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$. If $E_{k}(a ; f)=E_{k}(a ; g)$, we say that f and g share the value a with weight k.

The definition implies that if f, g share a value a with weight k, then z_{0} is a zero of $f-a$ with multiplicity $m(\leq k)$ if and only if it is a zero of $g-a$ with multiplicity $m(\leq k)$ and z_{0} is a zero of $f-a$ of multiplicity $m(>k)$ if and only if it is a zero of $g-a$ with multiplicity $n(>k)$ where m is not necessarily equal to n.
We write f, g share (a, k) to mean f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for all integers $p, 0 \leq p<k$. Also we note that f, g share a value a IM or CM if and only if f, g share $(a, 0)$ or (a, ∞) respectively.

Definition 6([2]). Let f and g be two nonconstant meromorphic functions such that f and g share (a, k) where $a \in \mathbb{C} \cup\{\infty\}$. Let z_{0} be an a-point of f with multiplicity p, an a-point of g of multiplicity q. We denote by $\bar{N}_{L}(r, a ; f)\left(\bar{N}_{L}(r, a ; g)\right)$ the counting function of those a-points of fand g where $p>q(q>p)$, by $\bar{N}_{E}^{(k+1}(r, a ; f)$ the counting functions of those a-points of f and g where $p=q \geq k+1$ each point in these counting functions is counted only once. In the same way we can define $\bar{N}_{E}^{(k+1}(r, a ; g)$. Clearly $\bar{N}_{E}^{(k+1}(r, a ; f)=\bar{N}_{E}^{(k+1}(r, a ; g)$.
Definition $7\left([7]\right.$, [8]). Let f, g share the value a IM. We denote by $\bar{N}_{*}(r, a ; f, g)$ the reduced counting function of those a-points of f whose multiplicities differ from the corresponding a-points of g. Clearly $\bar{N}_{*}(r, a ; f, g)=\bar{N}_{*}(r, a ; g, f)$ and $\bar{N}_{*}(r, a ; f, g)=\bar{N}_{L}(r, a ; f)+\bar{N}_{L}(r, a ; g)$.

In 1998, $2003 \mathrm{H} . \mathrm{X}$. Yi[12, 14] improved some results of Ueda[11], G.Brosch[4] and Lahiri[7] in the following theorems:

Theorem A([12]). Let f, g share $0,1, \infty C M$. If

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{N(r, 0 ; f \mid=1)+N(r, \infty ; f \mid=1)-\frac{1}{2} m(r, 1 ; g)}{T(r, f)}<\frac{1}{2} \tag{1}
\end{equation*}
$$

then either $f \equiv g$ or $f g \equiv 1$.

Theorem B([14]). Let f, g share $(0,1),(1,5),(\infty, 0)$. If

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{N(r, 0 ; f \mid=1)+3 \bar{N}(r, \infty ; f)-\frac{1}{2} m(r, 1 ; g)}{T(r, f)}<\frac{1}{2} \tag{2}
\end{equation*}
$$

then either $f \equiv g$ or $f g \equiv 1$.
Theorem C([14]). Let f, g share $(0,1),(1,3),(\infty, 0)$. If

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{N(r, 0 ; f \mid=1)+4 \bar{N}(r, \infty ; f)-\frac{1}{2} m(r, 1 ; g)}{T(r, f)}<\frac{1}{2} \tag{3}
\end{equation*}
$$

then either $f \equiv g$ or $f g \equiv 1$.
Theorem $\mathbf{D}([\mathbf{1 4}])$. et f, g share $(0,1),(1,6),(\infty, 2)$. If

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{N(r, 0 ; f \mid=1)+N(r, \infty ; f \mid=1)-\frac{1}{2} m(r, 1 ; g)}{T(r, f)}<\frac{1}{2} \tag{4}
\end{equation*}
$$

then either $f \equiv g$ or $f g \equiv 1$.
In 2007 Banerjee[2] improved Theorem B and Theorem C by weakening the conditions (2) and (3) respectively as follows.

Theorem E. Let f, g share $(0,1),(1,5),(\infty, 0)$. If
(5) $\quad \underset{r \rightarrow \infty}{\limsup } \frac{N(r, 0 ; f \mid=1)+3 \bar{N}(r, \infty ; f)-\frac{1}{2} m(r, 1 ; g)-\frac{1}{2} \bar{N}_{L}(r, 1 ; g)}{T(r, f)}<\frac{1}{2}$
then either $f \equiv g$ or $f g \equiv 1$.
Theorem F. Let f, g share $(0,1),(1,3),(\infty, 0)$. If
(6) $\quad \limsup \quad \frac{N(r, 0 ; f \mid=1)+4 \bar{N}(r, \infty ; f)-\frac{1}{2} m(r, 1 ; g)-\frac{1}{2} \bar{N}_{L}(r, 1 ; g)}{T(r, f)}<\frac{1}{2}$
then either $f \equiv g$ or $f g \equiv 1$.
Chen, Shen and Lin proved the following results that improved Theorem B, Theorem C and Theorem D in a manner different from Banerjee's.

Theorem $\mathbf{G}([5])$. Let f and g be two nonconstant meromorphic functions sharing $(0,1),(1, m),(\infty, 0)$ where $m(\geq 2)$ is an integer. If
(7) $\quad N(r, 0 ; f \mid=1)+\frac{2(m+1)}{m-1} \bar{N}(r, \infty ; f)-\frac{1}{2} m(r, 1 ; g)<\left(\frac{1}{2}+0(1)\right) T(r, f)$
for $r \notin I$ then either $f \equiv g$ or $f g \equiv 1$.

Theorem H([5]). Let f and g be two nonconstant meromorphic functions sharing $(0,1),(1, m),(\infty, k)$ where m and k are positive integers or infinity satisfying ($m-$ 1) $(k m-1)>(1+m)^{2}$. If

$$
\begin{equation*}
N(r, 0 ; f \mid=1)+\bar{N}(r, \infty ; f \mid=1)-\frac{1}{2} m(r, 1 ; g)<\left(\frac{1}{2}+0(1)\right) T(r, f) \tag{8}
\end{equation*}
$$

for $r \notin I$ then either $f \equiv g$ or $f g \equiv 1$.
Very recently Banerjee proved the following theorem improving all previous results.

Theorem $\mathbf{I}([3])$. Let f and g be two nonconstant meromorphic functions sharing $(0,1),(1, m),(\infty, k)$ where $m(\geq 2)$ is an integer. If

$$
\begin{align*}
& N(r, 0 ; f \mid=1)+\bar{N}(r, \infty ; f)+\frac{m+3}{m-1} \bar{N}(r, \infty ; f \mid \geq k+1) \tag{9}\\
& \quad-\frac{1}{2} m(r, 1 ; g)-\frac{1}{2} \bar{N}_{L}(r, 1 ; g)<\left(\frac{1}{2}+0(1)\right) T(r, f)
\end{align*}
$$

for $r \notin I$ then either $f \equiv g$ or $f g \equiv 1$.
Improving a result of H. X. Yi[12], Lahiri[10] proved the following.
Theorem J. Let f, g share $(0,0),(1,2),(\infty, 0)$. If

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{3 \bar{N}(r, 0 ; f)+3 \bar{N}(r, \infty ; f)-m(r, 1 ; g)}{T(r, f)}<1 \tag{10}
\end{equation*}
$$

then either $f \equiv g$ or $f g \equiv 1$.
In 2006 Banerjee[1] improved the above result by weakening the condition (10) in the Theorem K and proved some supplementary results.

Theorem K. Let f, g share $(0,0),(1,2),(\infty, 0)$. If
(11) $\quad \limsup _{r \rightarrow \infty} \frac{3 \bar{N}(r, 0 ; f)+3 \bar{N}(r, \infty ; f)-\bar{N}_{E}^{(3}(r, 1 ; f)-\bar{N}_{L}(r, 1 ; g)-m(r, 1 ; g)}{T(r, f)}<1$
then either $f \equiv g$ or $f g \equiv 1$.
Theorem L. Let f, g share $(0,0),(1,1),(\infty, \infty)$. If

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{3 \bar{N}(r, 0 ; f)+2 \bar{N}(r, \infty ; f)+\bar{N}_{f>2}(r, 1 ; g)-m(r, 1 ; g)}{T(r, f)}<1 \tag{12}
\end{equation*}
$$

then either $f \equiv g$ or $f g \equiv 1$.

Theorem M. Let f, g share $(0,0),(1,1),(\infty, 0)$. If

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{3 \bar{N}(r, 0 ; f)+3 \bar{N}(r, \infty ; f)+\bar{N}_{f>2}(r, 1 ; g)-m(r, 1 ; g)}{T(r, f)}<1 \tag{13}
\end{equation*}
$$

then either $f \equiv g$ or $f g \equiv 1$.
Theorem N. Let f, g share $(0,0),(1,0),(\infty, 0)$. If

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{3 \bar{N}(r, 0 ; f)+3 \bar{N}(r, \infty ; f)+N_{\otimes}(r, 1 ; f, g)-m(r, 1 ; g)}{T(r, f)}<1 \tag{14}
\end{equation*}
$$

then either $f \equiv g$ or $f g \equiv 1$, where $N_{\otimes}(r, 1 ; f, g)=\bar{N}_{L}(r, 1 ; f)+\bar{N}_{f>1}(r, 1 ; g)+$ $\bar{N}_{g>1}(r, 1 ; f)$.
Theorem O. Let f, g share $(0,0),(1,0),(\infty, \infty)$. If

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{3 \bar{N}(r, 0 ; f)+2 \bar{N}(r, \infty ; f)+N_{\otimes}(r, 1 ; f, g)-m(r, 1 ; g)}{T(r, f)}<1 \tag{15}
\end{equation*}
$$

then either $f \equiv g$ or $f g \equiv 1$, where $N_{\otimes}(r, 1 ; f, g)=\bar{N}_{L}(r, 1 ; f)+\bar{N}_{f>1}(r, 1 ; g)+$ $\bar{N}_{g>1}(r, 1 ; f)$.

The theorems stated so far evoke the following questions in our mind:

1. Is it possible to reduce the nature of sharing of the value 1 in Theorem I, in particular what happens if f, g share the value $(1,1)$?
2. Is it possible to weaken the conditions (11), (12), (13), (14), (15) in Theorems K, L, M, N, O, respectively?

Motivated by these questions we state our main results as follows.
Theorem 1. Let f and g be two nonconstant meromorphic functions sharing $(0,1)$, $(1,1),(\infty, k)$. If

$$
\begin{align*}
& N(r, 0 ; f \mid=1)+\bar{N}(r, \infty ; f)+5 \bar{N}(r, \infty ; f \mid \geq k+1)+2\left[\bar{N}_{g>2}(r, 1 ; f)\right. \tag{16}\\
& \left.\quad+\bar{N}_{f>2}(r, 1 ; g)\right]-\frac{1}{2} m(r, 1 ; g)-\frac{1}{2} \bar{N}_{L}(r, 1 ; g)-\frac{1}{2} \bar{N}_{E}^{(3}(r, 1 ; f) \\
& <\left(\frac{1}{2}+0(1)\right) T(r, f)
\end{align*}
$$

for $r \notin I$ then either $f \equiv g$ or $f g \equiv 1$.
Theorem 2. Let f and g be two nonconstant meromorphic functions sharing (0,1), $(1,2),(\infty, k)$. If

$$
\begin{align*}
& N(r, 0 ; f \mid=1)+\bar{N}(r, \infty ; f)+5 \bar{N}(r, \infty ; f \mid \geq k+1)+ \tag{17}\\
& \quad-\frac{1}{2} m(r, 1 ; g)-\frac{1}{2} \bar{N}_{L}(r, 1 ; g)-\frac{1}{2} \bar{N}_{E}^{(3}(r, 1 ; f) \\
& <\left(\frac{1}{2}+0(1)\right) T(r, f)
\end{align*}
$$

for $r \notin I$ then either $f \equiv g$ or $f g \equiv 1$.

Theorem 3. Let f, g share $(0,0),(1,2),(\infty, 0)$. If

$$
\begin{align*}
& 3 \bar{N}(r, 0 ; f)+3 \bar{N}(r, \infty ; f)-\bar{N}_{L}(r, 1 ; g)-m(r, 1 ; g)-\bar{N}_{E}^{(1}(r, 0 ; f) \tag{18}\\
& \quad-\bar{N}_{E}^{(1}(r, \infty ; f)-\bar{N}_{E}^{(3}(r, 1 ; f)<(1+o(1)) T(r, f)
\end{align*}
$$

for $r \notin I$ then either $f \equiv g$ or $f g \equiv 1$.
Theorem 4. Let f, g share $(0,0),(1,1),(\infty, \infty)$. If

$$
\begin{align*}
& 3 \bar{N}(r, 0 ; f)+2 \bar{N}(r, \infty ; f)+\bar{N}_{f>2}(r, 1 ; g)-m(r, 1 ; g)-\bar{N}_{E}^{(1}(r, 0 ; f) \tag{19}\\
& \quad-\bar{N}_{E}^{(3}(r, 1 ; f)<(1+o(1)) T(r, f)
\end{align*}
$$

for $r \notin I$ then either $f \equiv g$ or $f g \equiv 1$.
Theorem 5. Let f, g share $(0,0),(1,1),(\infty, 0)$. If

$$
\begin{align*}
& 3 \bar{N}(r, 0 ; f)+3 \bar{N}(r, \infty ; f)+\bar{N}_{f>2}(r, 1 ; g)-m(r, 1 ; g)-\bar{N}_{E}^{(1}(r, 0 ; f) \tag{20}\\
& \quad-\bar{N}_{E}^{(1}(r, \infty ; f)-\bar{N}_{E}^{(3}(r, 1 ; f)<(1+o(1)) T(r, f)
\end{align*}
$$

for $r \notin I$ then either $f \equiv g$ or $f g \equiv 1$.
Theorem 6. Let f, g share $(0,0),(1,0),(\infty, 0)$. If

$$
\begin{align*}
& 3 \bar{N}(r, 0 ; f)+3 \bar{N}(r, \infty ; f)+N_{\otimes}(r, 1 ; f, g)-m(r, 1 ; g)-\bar{N}_{E}^{(1}(r, 0 ; f) \tag{21}\\
& \quad-\bar{N}_{E}^{1}(r, \infty ; f)-\bar{N}_{E}^{(3}(r, 1 ; f)<(1+o(1)) T(r, f)
\end{align*}
$$

for $r \notin I$ then either $f \equiv g$ or $f g \equiv 1$, where
$N_{\otimes}(r, 1 ; f, g)=\bar{N}_{L}(r, 1 ; f)+\bar{N}_{f>1}(r, 1 ; g)+\bar{N}_{g>1}(r, 1 ; f)$.
Theorem 7. Let f, g share $(0,0),(1,0),(\infty, \infty)$. If

$$
\begin{align*}
& 3 \bar{N}(r, 0 ; f)+2 \bar{N}(r, \infty ; f)+N_{\otimes}(r, 1 ; f, g)-m(r, 1 ; g)-\bar{N}_{E}^{(1}(r, 0 ; f) \tag{22}\\
& \quad-\bar{N}_{E}^{(3)}(r, 1 ; f)<(1+o(1)) T(r, f)
\end{align*}
$$

for $r \notin I$ then either $f \equiv g$ or $f g \equiv 1$, where $N_{\otimes}(r, 1 ; f, g)=\bar{N}_{L}(r, 1 ; f)+$ $\bar{N}_{f>1}(r, 1 ; g)+\bar{N}_{g>1}(r, 1 ; f)$.

Remark. (i) Theorem 1 answers the question 1 raised above.
(ii) Theorem 2 improves Theorem I when $m=2$.
(iii) Theorems 3, 4, 5, 6, 7 improve Theorems K, L, M, N, O respectively under weaker conditions as is asked in question 2 above.

2. Lemmas

In this section we present some lemmas which will be required to establish our theorems. In the lemmas several times we use the function H defined by $H=$ $\frac{f^{\prime \prime}}{f^{\prime}}-\frac{2 f^{\prime}}{f-1}-\frac{g^{\prime \prime}}{g^{\prime}}+\frac{2 g^{\prime}}{g-1}$.

Lemma $\mathbf{1}([7])$. If f and g share $(0,0),(1,0),(\infty, 0)$ then
(i) $T(r, f) \leq 3 T(r, g)+S(r, f)$
(ii) $T(r, g) \leq 3 T(r, f)+S(r, g)$.

Lemma 1 shows that $S(r, f)=S(r, g)$ and we denote their common value by $S(r)$.

Lemma 2. If f and g share $(1,1)$ then

$$
\begin{aligned}
& N(r, 1 ; g)-\bar{N}(r, 1 ; g) \\
& \geq 2 \bar{N}_{L}(r, 1 ; g)+\bar{N}_{L}(r, 1 ; f)+\bar{N}_{E}^{(2}(r, 1 ; f)+\bar{N}_{E}^{(3}(r, 1 ; f)+\left[\bar{N}_{f<4}(r, 1 ; g)\right. \\
& \left.\quad+2 \bar{N}_{f<5}(r, 1 ; g)+3 \bar{N}_{f<6}(r, 1 ; g)+\ldots\right]+\left[\bar{N}_{f>3}(r, 1 ; g)+2 \bar{N}_{f>4}(r, 1 ; g)\right. \\
& \left.\quad+3 \bar{N}_{f>5}(r, 1 ; g)+\ldots\right] .
\end{aligned}
$$

Proof. Let z_{0} be a 1-point of f and g of respective multiplicities p and q. We denote by $N_{1}(r), N_{2}(r)$ and $N_{3}(r)$ the counting functions of those 1-points of f and g when $2 \leq q<p, 2 \leq q=p$ and $2 \leq p<q$ respectively where each point in these counting functions is counted $q-2$ times. Since f, g share $(1,1)$ we have

$$
\begin{aligned}
& N(r, 1 ; g)-\bar{N}(r, 1 ; g) \\
& =\bar{N}_{E}^{2}(r, 1 ; f)+N_{2}(r)+\bar{N}_{L}(r, 1 ; g)+N_{3}(r)+\bar{N}_{L}(r, 1 ; f)+N_{1}(r)
\end{aligned}
$$

Now $N_{3}(r)>\bar{N}_{L}(r, 1 ; g)+\left[\bar{N}_{f<4}(r, 1 ; g)+2 \bar{N}_{f<5}(r, 1 ; g)+3 \bar{N}_{f<6}(r, 1 ; g)+\ldots\right]$, $N_{2}(r)>\bar{N}_{E}^{3}(r, 1 ; f)$ and $N_{1}(r)>\left[\bar{N}_{f>3}(r, 1 ; g)+2 \bar{N}_{f>4}(r, 1 ; g)+\ldots.\right]$ the lemma follows from above.

Lemma 3. If f and g share $(1,0)$ then

$$
\begin{aligned}
& N(r, 1 ; g)-\bar{N}(r, 1 ; g) \\
& \geq 2 \bar{N}_{L}(r, 1 ; g)+\bar{N}_{L}(r, 1 ; f)+\bar{N}_{E}^{(2}(r, 1 ; f)+\bar{N}_{E}^{(3}(r, 1 ; f)-\bar{N}_{f>1}(r, 1 ; g) \\
& \quad-\bar{N}_{g>1}(r, 1 ; f)
\end{aligned}
$$

Proof. Let z_{0} be a 1-point of f and g of respective multiplicities p and q. We denote by $N_{1}(r), N_{2}(r)$ and $N_{3}(r)$ the counting functions of those 1-points of f and g when $1 \leq q<p, 2 \leq q=p$ and $1 \leq p<q$ respectively where in the first counting function each point is counted $q-1$ times and in the remaining two $q-2$ times. Then observing that $N_{2}(r) \geq \bar{N}_{E}^{(3}(r, 1 ; f)$ the proof follows in the line of proof of Lemma 2.4[1].

Lemma $4([8])$. If f and g share $(1,1)$ and $H \not \equiv 0$ then

$$
N(r, 1 ; f \mid=1)=N(r, 1 ; g \mid=1) \leq N(r, H)+S(r, f)+S(r, g) .
$$

Lemma 5([13], [15]). If f and g share $(1,0)$ and $H \not \equiv 0$ then

$$
N_{E}^{1)}(r, 1 ; f) \leq N(r, H)+S(r, f)+S(r, g),
$$

where $N_{E}^{1)}(r, 1 ; f)$ denotes the counting function of simple 1-points of f and g.
Lemma 6([10]). If f and g share $(0,0),(1,0),(\infty, 0)$ and $H \not \equiv 0$ then

$$
N(r, H) \leq \bar{N}_{*}(r, 0 ; f, g)+\bar{N}_{*}(r, 1 ; f, g)+\bar{N}_{*}(r, \infty ; f, g)+\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)
$$

where $\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)$ is the reduced counting function of those zeros of f^{\prime} which are not the zeros of $f(f-1)$ and $\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)$ is similarly defined.
Lemma 7. If f and g share $(0,0),(1,1),(\infty, k)$ and $H \not \equiv 0$ then
$\bar{N}(r, 1 ; f)+\bar{N}(r, 1 ; g)$
$\leq \bar{N}_{*}(r, 0 ; f, g)+\bar{N}_{*}(r, \infty ; f, g)+\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)$

$$
+T(r, g)-m(r, 1 ; g)-\bar{N}_{L}(r, 1 ; g)-\bar{N}_{E}^{(3}(r, 1 ; f)+\bar{N}_{g>2}(r, 1 ; f)+\bar{N}_{f>2}(r, 1 ; g)
$$

where $\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)$ and $\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)$ are same as Lemma $[6]$.
Proof. We have by Lemmas 4, 6 and 2,

$$
\begin{aligned}
& \bar{N}(r, 1 ; f)+\bar{N}(r, 1 ; g) \\
& \leq N(r, H)+\bar{N}(r, 1 ; g)+\bar{N}(r, 1 ; f \mid \geq 2) \\
& \leq \bar{N}_{*}(r, 0 ; f, g)+\bar{N}_{*}(r, 1 ; f, g)+\bar{N}_{*}(r, \infty ; f, g)+\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right) \\
& \quad+\bar{N}(r, 1 ; g)+\bar{N}(r, 1 ; f \mid \geq 2) \\
& \leq \bar{N}_{*}(r, 0 ; f, g)+\bar{N}_{*}(r, 1 ; f, g)+\bar{N}_{*}(r, \infty ; f, g)+\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right) \\
&+N(r, 1 ; g)-2 \bar{N}_{L}(r, 1 ; g)-\bar{N}_{L}(r, 1 ; f)-\bar{N}_{E}^{(2}(r, 1 ; f)-\bar{N}_{E}^{(3}(r, 1 ; f) \\
&-\left[\bar{N}_{f<4}(r, 1 ; g)+2 \bar{N}_{f<5}(r, 1 ; g)+3 \bar{N}_{f<6}(r, 1 ; g)+\ldots\right] \\
& \quad-\left[\bar{N}_{f>3}(r, 1 ; g)+2 \bar{N}_{f>4}(r, 1 ; g)+\ldots .\right]+\bar{N}(r, 1 ; f \mid \geq 2)
\end{aligned}
$$

Now we observe that $\bar{N}(r, 1 ; f \mid \geq 2)=\bar{N}_{L}(r, 1 ; g)+\bar{N}_{L}(r, 1 ; f)+\bar{N}_{E}^{(2}(r, 1 ; f)$, and $\bar{N}_{L}(r, 1 ; g)-\left[\bar{N}_{f<4}(r, 1 ; g)+2 \bar{N}_{f<5}(r, 1 ; g)+3 \bar{N}_{f<6}(r, 1 ; g)+\ldots\right] \leq \bar{N}_{g>2}(r, 1 ; f)$ and $\bar{N}_{L}(r, 1 ; f)-\left[\bar{N}_{f>3}(r, 1 ; g)+2 \bar{N}_{f>4}(r, 1 ; g)+\ldots.\right] \leq \bar{N}_{f>2}(r, 1 ; g)$.
Thus from above we obtain

$$
\begin{aligned}
& \bar{N}(r, 1 ; f)+\bar{N}(r, 1 ; g) \\
& \leq \bar{N}_{*}(r, 0 ; f, g)+\bar{N}_{*}(r, \infty ; f, g)-\bar{N}_{L}(r, 1 ; g)+T(r, g)-m(r, 1 ; g) \\
& \quad+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)-\bar{N}_{E}^{(3}(r, 1 ; f)+\bar{N}_{g>2}(r, 1 ; f)+\bar{N}_{f>2}(r, 1 ; g)
\end{aligned}
$$

This completes the proof.

Lemma 8. If f and g share $(0,1),(1,1),(\infty, k)$, then
(i) $\bar{N}_{*}(r, 0 ; f, g) \leq \bar{N}(r, 0 ; f \mid \geq 2) \leq \bar{N}_{*}(r, 1 ; f, g)+\bar{N}(r, \infty ; f \mid \geq k+1)$,
(ii) $\bar{N}(r, 1, f|>2, g|>2) \leq 2 \bar{N}(r, \infty ; f \mid \geq k+1)$.

Proof. Let $\phi_{1}=\frac{f^{\prime}}{f-1}-\frac{g^{\prime}}{g-1}, \phi_{2}=\frac{f^{\prime}}{f}-\frac{g^{\prime}}{g}$ and $\phi_{3}=\phi_{1}-\phi_{2}$. Since $H \not \equiv 0$, we have $f \not \equiv g$ and hence it follows that $\phi_{i} \not \equiv 0$ for $i=1,2,3$. Now

$$
\begin{aligned}
\bar{N}_{*}(r, 0 ; f, g) & \leq \bar{N}(r, 0 ; f \mid \geq 2) \\
& \leq N\left(r, 0 ; \phi_{1}\right) \\
& \leq T(r, f)+O(1)=N\left(r, \infty ; \phi_{1}\right)+S(r) \\
& \leq \bar{N}_{*}(r, 1 ; f, g)+\bar{N}(r, \infty ; f \mid \geq k+1)+S(r)
\end{aligned}
$$

which is (i).
Again

$$
\begin{aligned}
\bar{N}(r, 1 ; f \mid \geq 2)+\bar{N}(r, 1 ; f|>2, g|>2) & \leq N\left(r, 0 ; \phi_{2}\right) \leq T\left(r, \phi_{2}\right)+S(r) \\
& =N\left(r, \infty ; \phi_{2}\right)+S(r) \\
& =\bar{N}(r, 0 ; f \mid \geq 2)+\bar{N}(r, \infty ; f \mid \geq k+1) .
\end{aligned}
$$

Hence from above we have

$$
\begin{aligned}
& \bar{N}(r, 1 ; f \mid \geq 2)+\bar{N}(r, 1 ; f|>2, g|>2) \\
& \leq \bar{N}_{*}(r, 1 ; f, g)+\bar{N}(r, \infty ; f \mid \geq k+1)+\bar{N}(r, \infty ; f \mid \geq k+1) \\
& \leq \bar{N}(r, 1 ; f \mid \geq 2)+2 \bar{N}(r, \infty ; f \mid \geq k+1),
\end{aligned}
$$

which yields (ii).
Lemma 9. If f and g share $(0,1),(1,1),(\infty, k)$ and $H \not \equiv 0$, then
$T(r, f) \leq 2 \bar{N}(r, 0 ; f \mid=1)+2 \bar{N}(r, \infty ; f)+10 \bar{N}(r, \infty ; f \mid \geq k+1)$
$+4\left[\bar{N}_{g>2}(r, 1 ; f)+\bar{N}_{f>2}(r, 1 ; g)\right]-m(r, 1 ; g)-\bar{N}_{L}(r, 1 ; g)-\bar{N}_{E}^{(3}(r, 1 ; f)+S(r)$.
Proof. We denote by $N_{0}\left(r, o ; f^{\prime}\right)$ the counting function of those zeros of f^{\prime} which are not the zeros of $f(f-1)$. Similarly we define $N_{0}\left(r, 0 ; g^{\prime}\right)$. Then by the Second

Fundamental Theorem and Lemma 7 we have

$$
\begin{aligned}
T & (r, f)+T(r, g) \\
\leq & \bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)+\bar{N}(r, 1 ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; g)+\bar{N}(r, 1 ; g) \\
& -N_{0}\left(r, 0 ; g^{\prime}\right)-N_{0}\left(r, o ; f^{\prime}\right)+S(r) \\
\leq & 2 \bar{N}(r, 0 ; f \mid=1)+2 \bar{N}(r, 0 ; f \mid \geq 2)+2 \bar{N}(r, \infty ; f)+\left[\bar{N}_{*}(r, 0 ; f, g)\right. \\
& +\bar{N}_{*}(r, \infty ; f, g)-\bar{N}_{L}(r, 1 ; g)-\bar{N}_{E}^{(3}(r, 1 ; f)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+T(r, g) \\
& \left.-m(r, 1 ; g)+\bar{N}_{g>2}(r, 1 ; f)+\bar{N}_{f>2}(r, 1 ; g)\right]-N_{0}\left(r, 0 ; g^{\prime}\right)-N_{0}\left(r, o ; f^{\prime}\right)+S(r) \\
\leq & 2 \bar{N}(r, 0 ; f \mid=1)+2 \bar{N}(r, \infty ; f)+2 \bar{N}(r, 0 ; f \mid \geq 2)+\bar{N}_{*}(r, 0 ; f, g) \\
& +\bar{N}(r, \infty ; f \mid \geq k+1)-\bar{N}_{L}(r, 1 ; g)-\bar{N}_{E}^{(3}(r, 1 ; f)+T(r, g)-m(r, 1 ; g) \\
& +\bar{N}_{g>2}(r, 1 ; f)+\bar{N}_{f>2}(r, 1 ; g)+S(r) \\
\leq & 2 \bar{N}(r, 0 ; f \mid=1)+2 \bar{N}(r, \infty ; f)+3 \bar{N}(r, 0 ; f \mid \geq 2)+\bar{N}(r, \infty ; f \mid \geq k+1) \\
& -\bar{N}_{L}(r, 1 ; g)-\bar{N}_{E}^{(3}(r, 1 ; f)+T(r, g)-m(r, 1 ; g)+\bar{N}_{g>2}(r, 1 ; f) \\
& +\bar{N}_{f>2}(r, 1 ; g)+S(r)
\end{aligned}
$$

Now using (i) of Lemma 8 we obtain

$$
\begin{aligned}
& T(r, f)+T(r, g) \\
& \leq 2 \bar{N}(r, 0 ; f \mid=1)+2 \bar{N}(r, \infty ; f)+3\left[\bar{N}_{*}(r, 1 ; f, g)+\bar{N}(r, \infty ; f \mid \geq k+1)\right] \\
& \quad+\bar{N}(r, \infty ; f \mid \geq k+1)-\bar{N}_{L}(r, 1 ; g)-\bar{N}_{E}^{(3}(r, 1 ; f)+T(r, g)-m(r, 1 ; g) \\
& \quad+\bar{N}_{g>2}(r, 1 ; f)+\bar{N}_{f>2}(r, 1 ; g)+S(r)
\end{aligned}
$$

Thus we obtain from above using (ii) of Lemma 8

$$
\begin{aligned}
T & (r, f) \\
\leq & 2 \bar{N}(r, 0 ; f \mid=1)+2 \bar{N}(r, \infty ; f)+4 \bar{N}(r, \infty ; f \mid \geq k+1)+\bar{N}_{g>2}(r, 1 ; f) \\
& +\bar{N}_{f>2}(r, 1 ; g)+3\left[\bar{N}_{g>2}(r, 1 ; f)+\bar{N}_{f>2}(r, 1 ; g)+\bar{N}(r, 1 ; f|>2, g|>2)\right] \\
& -m(r, 1 ; g)-\bar{N}_{L}(r, 1 ; g)-\bar{N}_{E}^{(3}(r, 1 ; f)+S(r) \\
\leq & 2 \bar{N}(r, 0 ; f \mid=1)+2 \bar{N}(r, \infty ; f)+4 \bar{N}(r, \infty ; f \mid \geq k+1)+6 \bar{N}(r, \infty ; f \mid \geq k+1) \\
& +4 \bar{N}_{g>2}(r, 1 ; f)+4 \bar{N}_{f>2}(r, 1 ; g)-m(r, 1 ; g)-\bar{N}_{L}(r, 1 ; g)-\bar{N}_{E}^{(3}(r, 1 ; f)+S(r) \\
= & 2 \bar{N}(r, 0 ; f \mid=1)+2 \bar{N}(r, \infty ; f)+10 \bar{N}(r, \infty ; f \mid \geq k+1)+4 \bar{N}_{g>2}(r, 1 ; f) \\
& +4 \bar{N}_{f>2}(r, 1 ; g)-m(r, 1 ; g)-\bar{N}_{L}(r, 1 ; g)-\bar{N}_{E}^{(3}(r, 1 ; f)+S(r) .
\end{aligned}
$$

This proves the lemma.

Lemma 10. If f and g share $(0,0),(1,0),(\infty, 0)$ and $H \not \equiv 0$, then
$T(r, f)$

$$
\begin{aligned}
\leq & 3 \bar{N}(r, 0 ; f)+3 \bar{N}(r, \infty ; f)+\left[\bar{N}_{g>1}(r, 1 ; f)+\bar{N}_{f>1}(r, 1 ; g)\right]+\bar{N}_{L}(r, 1 ; f) \\
& -\bar{N}_{E}^{(1}(r, 1 ; f)-\bar{N}_{E}^{(1}(r, \infty ; f)-m(r, 1 ; g)-\bar{N}_{E}^{(3}(r, 1 ; f)+S(r) .
\end{aligned}
$$

Proof. By the Second Fundamental Theorem we have

$$
\begin{aligned}
& T(r, f)+T(r, g) \\
& \leq \bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)+\bar{N}(r, 1 ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; g)+\bar{N}(r, 1 ; g)-N_{0}\left(r, 0 ; g^{\prime}\right) \\
& \quad-N_{0}\left(r, o ; f^{\prime}\right)+S(r)\left[\text { where } N_{0}\left(r, 0 ; g^{\prime}\right), N_{0}\left(r, o ; f^{\prime}\right) \text { are same as Lemma } 9\right] \\
& =2 \bar{N}(r, 0 ; f)+2 \bar{N}(r, \infty ; f)+\bar{N}(r, 1 ; f)+\bar{N}(r, 1 ; g)-N_{0}\left(r, 0 ; g^{\prime}\right)-N_{0}\left(r, o ; f^{\prime}\right)+S(r) .
\end{aligned}
$$

Now by Lemma 3, 5, and 6 we see that

$$
\begin{aligned}
& \bar{N}(r, 1 ; f)+\bar{N}(r, 1 ; g) \\
&= \bar{N}_{L}(r, 1 ; f)+\bar{N}_{L}(r, 1 ; g)+\bar{N}_{E}^{1)}(r, 1 ; f)+\bar{N}_{E}^{(2}(r, 1 ; f)+\bar{N}(r, 1 ; g) \\
& \leq \bar{N}_{E}^{1)}(r, 1 ; f)+\bar{N}_{L}(r, 1 ; f)+\bar{N}_{L}(r, 1 ; g)+\bar{N}_{E}^{(2}(r, 1 ; f)+N(r, 1 ; g)-\bar{N}_{E}^{(2}(r, 1 ; f) \\
&-\bar{N}_{E}^{(3}(r, 1 ; f)-\bar{N}_{L}(r, 1 ; f)-2 \bar{N}_{L}(r, 1 ; g)+\left[\bar{N}_{g>1}(r, 1 ; f)+\bar{N}_{f>1}(r, 1 ; g)\right] \\
& \leq N(r, H)+T(r, g)-m(r, 1 ; g)-\bar{N}_{L}(r, 1 ; g)-\bar{N}_{E}^{(3}(r, 1 ; f) \\
&+\left[\bar{N}_{g>1}(r, 1 ; f)+\bar{N}_{f>1}(r, 1 ; g)\right] \\
& \leq \bar{N}_{*}(r, 0 ; f, g)+\bar{N}_{*}(r, \infty ; f, g)+\bar{N}_{*}(r, 1 ; f, g)+\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right) \\
&+T(r, g)-m(r, 1 ; g)-\bar{N}_{L}(r, 1 ; g)-\bar{N}_{E}^{(3}(r, 1 ; f)+\left[\bar{N}_{g>1}(r, 1 ; f)+\bar{N}_{f>1}(r, 1 ; g)\right] \\
&= \bar{N}(r, 0 ; f)-\bar{N}_{E}^{(1}(r, 0 ; f)+\bar{N}(r, \infty ; f)-\bar{N}_{E}^{(1}(r, \infty ; f)+\bar{N}_{L}(r, 1 ; f)+T(r, g) \\
&+\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)-m(r, 1 ; g)-\bar{N}_{E}^{(3}(r, 1 ; f) \\
&+\left[\bar{N}_{g>1}(r, 1 ; f)+\bar{N}_{f>1}(r, 1 ; g)\right] .
\end{aligned}
$$

Therefore from above we obtain

$$
\begin{aligned}
& T(r, f)+T(r, g) \\
& \leq 3 \bar{N}(r, 0 ; f)+3 \bar{N}(r, \infty ; f)+\bar{N}_{L}(r, 1 ; f)+T(r, g)-m(r, 1 ; g)-\bar{N}_{E}^{(1}(r, 0 ; f) \\
& \quad-\bar{N}_{E}^{(1}(r, \infty ; f)-\bar{N}_{E}^{(3}(r, 1 ; f)+\left[\bar{N}_{g>1}(r, 1 ; f)+\bar{N}_{f>1}(r, 1 ; g)\right]
\end{aligned}
$$

and hence,

$$
\begin{aligned}
& T(r, f) \\
& \leq 3 \bar{N}(r, 0 ; f)+3 \bar{N}(r, \infty ; f)+\bar{N}_{L}(r, 1 ; f)-m(r, 1 ; g)-\bar{N}_{E}^{(1}(r, 0 ; f)-\bar{N}_{E}^{(1}(r, \infty ; f) \\
& \quad-\bar{N}_{E}^{(3}(r, 1 ; f)+\left[\bar{N}_{g>1}(r, 1 ; f)+\bar{N}_{f>1}(r, 1 ; g)\right]
\end{aligned}
$$

This proves the lemma.

Lemma 11([12]). If f and g share $(0,0),(1,0),(\infty, 0)$ and $H \equiv 0$, then f and g share $(0, \infty),(1, \infty),(\infty, \infty)$.
Lemma $12([9])$. If f and g be two nonconstant meromorphic functions sharing $(0, \infty),(1, \infty),(\infty, \infty)$ and $f \equiv g$, then

$$
N(r, 0 ; f \mid \geq 2)+N(r, 1 ; f \mid \geq 2)+N(r, \infty ; f \mid \geq 2)=S(r)
$$

Lemma 13([10], [14]). Let f and g be two nonconstant meromorphic functions sharing 0, 1, $\infty, C M$. If

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{2 \bar{N}(r, 0 ; f)+2 \bar{N}(r, \infty ; f)-m(r, 1 ; g)}{T(r, f)}<1 \tag{23}
\end{equation*}
$$

then either $f \equiv g$ or $f g \equiv 1$.

3. Proofs of the Theorems

Proof of Theorem 1: Suppose that $H \not \equiv 0$. Then by Lemma 9 we obtain a contradiction to (16). Hence $H \equiv 0$. Therefore by Lemma 11, f and g share $(0, \infty),(1, \infty),(\infty, \infty)$. Therefore by Lemma 12
$\bar{N}_{g>2}(r, 1 ; f)+\bar{N}_{f>2}(r, 1 ; g)+\bar{N}(r, \infty ; f \mid \geq 2)+\bar{N}_{L}(r, 1 ; g)+\bar{N}_{E}^{(2}(r, 1 ; f)=S(r)$.
Now by Theorem A our theorem follows.
Proof of Theorem 2: Since f and g share (1,2) it follows that

$$
\bar{N}_{g>2}(r, 1 ; f)+\bar{N}_{f>2}(r, 1 ; g)=S(r)
$$

Again since f, g share $(1,2), f, g$ share $(1,1)$ and Theorem 2 follows from Theorem 1.

Proof of Theorem 6: Suppose that $H \not \equiv 0$. Then by Lemma 10 we obtain a contradiction of (21). Therefore $H \equiv 0$ and hence by Lemma $11, f$ and g share $(0, \infty)$, $(1, \infty),(\infty, \infty)$. Therefore, $\bar{N}_{E}^{(1}(r, \infty ; f)=\bar{N}(r, \infty ; f)$ and $\bar{N}_{E}^{(1}(r, 0 ; f)=\bar{N}(r, 0 ; f)$. Then by Lemma 12 we obtain $N_{\otimes}(r, 1 ; f, g)+\bar{N}_{E}^{(3}(r, 1 ; f)=S(r)$. Thus by (21) and Lemma 13 the proof follows. This completes the proof.

Proof of Theorem 7: Since f, g share (∞, ∞), we see that $\bar{N}_{E}^{(1}(r, \infty ; f)=\bar{N}(r, \infty ; f)$ and therefore the theorem follows easily from Theorem 6 , remembering that sharing (∞, ∞) implies sharing $(\infty, 0)$. This proves the theorem.

Proof of Theorem 5: Suppose that $H \not \equiv 0$. Then by the Second Fundamental Theorem and by Lemma 7 with $k=0$ we obtain

$$
\begin{aligned}
& T(r, f)+T(r, g) \\
& \leq 2 \bar{N}(r, 0 ; f)+2 \bar{N}(r, \infty ; f)+\bar{N}_{*}(r, 0 ; f, g)+\bar{N}_{*}(r, \infty ; f, g)+\bar{N}_{0}\left(r, 0 ; f^{\prime}\right) \\
& \quad+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)+T(r, g)-m(r, 1 ; g)-\bar{N}_{L}(r, 1 ; g)-\bar{N}_{E}^{(3}(r, 1 ; f) \\
& \quad+\bar{N}_{g>2}(r, 1 ; f)+\bar{N}_{f>2}(r, 1 ; g)-N_{0}\left(r, 0 ; g^{\prime}\right)-N_{0}\left(r, o ; f^{\prime}\right) \\
& \quad+S(r),\left[\text { where } N_{0}\left(r, 0 ; g^{\prime}\right), N_{0}\left(r, o ; f^{\prime}\right) \text { are same as Lemma } 9\right] \\
& \leq \\
& \quad 3 \bar{N}(r, 0 ; f)+3 \bar{N}(r, \infty ; f)+T(r, g)-m(r, 1 ; g)-\bar{N}_{E}^{(1}(r, 0 ; f)-\bar{N}_{E}^{(1}(r, \infty ; f) \\
& \quad-\bar{N}_{E}^{(3}(r, 1 ; f)+\bar{N}_{f>2}(r, 1 ; g)+S(r) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& T(r, f) \\
& \leq 3 \bar{N}(r, 0 ; f)+3 \bar{N}(r, \infty ; f)-m(r, 1 ; g)-\bar{N}_{E}^{(1}(r, 0 ; f)-\bar{N}_{E}^{(1}(r, \infty ; f)-\bar{N}_{E}^{(3}(r, 1 ; f) \\
& \quad+\bar{N}_{f>2}(r, 1 ; g)+S(r)
\end{aligned}
$$

which contradicts (20). Hence $H \equiv 0$ and the theorem follows from Lemmas 11, 12 and 13. This completes the proof.
Proof of Theorem 4: Since f, g share $(\infty, \infty), \bar{N}_{E}^{(1}(r, \infty ; f)=\bar{N}(r, \infty ; f)$ and our theorem follows easily from Theorem 5 . This proves the theorem.
Proof of Theorem 3: Suppose that $H \not \equiv 0$. Since f, g share (1,2),

$$
\bar{N}_{f>2}(r, 1 ; g)+\bar{N}_{g>2}(r, 1 ; f)=S(r) .
$$

Therefore proceeding as in the proof of Theorem 5, we obtain

$$
\begin{aligned}
& T(r, f) \\
& \leq 3 \bar{N}(r, 0 ; f)+3 \bar{N}(r, \infty ; f)-m(r, 1 ; g)-\bar{N}_{E}^{(1}(r, 0 ; f)-\bar{N}_{E}^{(1}(r, \infty ; f)-\bar{N}_{E}^{(3}(r, 1 ; f) \\
& \quad-\bar{N}_{L}(r, 1 ; g)+S(r)
\end{aligned}
$$

which contradicts (18). Hence $H \equiv 0$ and the theorem follows from Lemmas 11, 12 and 13. This completes the proof.

References

[1] A. Banerjee, Uniqueness of meromorphic functions that share three values, The Australian J. Math. Annal. Appl.(http://ajmaa.org)3.2(1)(2006), 1-10.
[2] A. Banerjee, Meromorohic functions that share three values with finite weight, Ann. Polon. Math., 91(1)(2007), 57-69.
[3] A. Banerjee, Some further results on Lahiri, Filomat., 23(2009), 37-49.
[4] G. Brosch, Eindeutigkeitssätzefür meromorphic Funktionen, Thesis, Technical University of Aachen, 1989.
[5] J. Chen, S. Shen and W. C. Lin, Meromorphic functions sharing three values with weight, J. Inequal. Pure Appl. Math., 8(1)(2007), Ary.19, [http://jipam.vu.edu.au/].
[6] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford(1964).
[7] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J., 161(2001), 193-206.
[8] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Var., 46(2001), 241-253.
[9] I. Lahiri, Weighted sharing of three values and uniqueness of meromorphic functions, Kodai Math. J., 24(2001), 421-435.
[10] I. Lahiri, Meromorphic functions sharing three values, Southeast Asian Bull. Math., 26(2003), 961-966.
[11] H. Ueda, Unicity theorems for meromorphic or entire functions II, Kodai Math. J., 6(1983), 26-36.
[12] H. X. Yi, Meromorphic functions that share three values, Bull. Hong Kong Math. Soc., 2(1998), 679-688.
[13] H. X. Yi, Meromorphic functions that share two or three values II, Kodai Math. J., 22(1999), 264-272.
[14] H. X. Yi, Meromorphic functions that share three values, Bull. Hong Kong Math. Soc., 2(1998), 679-688.
[15] H. X. Yi and Thamir C Alzahari, Weighted value sharing and a question of I. Lahiri, Complex Var Theory Appl., 49(15)(2004), 1063-1078.

[^0]: * Corresponding Author.

 Received January 5, 2010; accepted August 5, 2010.
 2000 Mathematics Subject Classification: 30D35.
 Key words and phrases: Meromorphic functions, Weighted sharing, Uniqueness.

