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Abstract. We prove some uniqueness theorems of meromorphic functions sharing three

values which improves some results of Banerjee.

1. Introduction, definitions and results

Let f and g be two nonconstant meromorphic functions defined in the open
complex plane C. If for some a ∈ C ∪ {∞}, f and g have the same set of a-points
with same multiplicities, we say that f and g share the value a CM(Counting
Multiplicities) and if we do not consider the multiplicities, then f and g are said
to share the value a IM (Ignoring Multiplicities). We do not explain the standard
notations and definitions of the value distribution theory as these are available in
[6]. When we let r towards ∞ we will always assume that r may avoid a set I of
finite linear measure, not necessarily the same every time in its approach to ∞.

Definition 1([2]). Let p be a positive integer and a ∈ C ∪ {∞}. We denote by
N(r, a; f |= p) the counting function of those a-points of f whose multiplicities are
excatly equal to p, where an a-point is counted only once.

Definition 2([7], [8]). Let p be a positive integer and a ∈ C ∪ {∞}. We denote by
N(r, a; f |≥ p) the counting function of those a-points of f whose multiplicities are
greater than or equal to p, where an a-point is counted only once.

Definition 3. Let f and g share a value a IM. Let z be an a-point of f and g with
multiplicities mf (z) and mg(z) respectivily. Let p be a positive integer.
We put γ(p(z) = 1 if both mf (z) > p and mg(z) > p and γ(p(z) = 0, otherwise.
Let

n(r, a; f |> p, g |> p) =
∑
|z|≤r

γ(p(z).
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Clearly n(r, a; f |> p, g |> p) = n(r, a; g |> p, f |> p). We denote by N(r, a; f |>
p, g |> p) the integrated counting function obtained by from n(r, a; f |> p, g |> p).
Clearly N(r, a; f |> p, g |> p) = N(r, a; g |> p, f |> p).

Definition 4([15]). Let f and g share the value 1 IM. Let z0 be a 1-point of f and
g with multiplicities p and q respectivily. Let s be a positive integer. We denote by
Nf>s(r, 1; g) the reduced counting function of those 1-points of f and g such that
p > q = s. Similarly Nf<s(r, 1; g) will denote the reduced counting function of those
1-points of f and g where p < q = s.

Definition 5([7], [8]). Let k be a nonnegative integer or infinity. For a ∈ C∪ {∞}
we denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity
m is counted m times if m ≤ k and k + 1times if m > k. If Ek(a; f) = Ek(a; g),we
say that f and g share the value a with weight k.

The definition implies that if f, g share a value a with weight k, then z0 is a zero
of f −a with multiplicity m(≤ k) if and only if it is a zero of g−a with multiplicity
m(≤ k) and z0 is a zero of f − a of multiplicity m(> k) if and only if it is a zero of
g − a with multiplicity n(> k) where m is not necessarily equal to n.
We write f, g share (a, k) to mean f, g share the value a with weight k. Clearly if
f, g share (a, k) then f, g share (a, p) for all integers p , 0 ≤ p < k. Also we note that
f, g share a value a IM or CM if and only if f, g share (a, 0) or (a,∞) respectively.

Definition 6([2]). Let f and g be two nonconstant meromorphic functions such
that f and g share (a, k) where a ∈ C ∪ {∞}. Let z0 be an a-point of f with multi-
plicity p, an a-point of g of multiplicity q. We denote by NL(r, a; f)(NL(r, a; g)) the

counting function of those a-points of fand g where p > q(q > p), by N
(k+1

E (r, a; f)
the counting functions of those a-points of f and g where p = q ≥ k + 1 each point
in these counting functions is counted only once. In the same way we can define

N
(k+1

E (r, a; g). Clearly N
(k+1

E (r, a; f) = N
(k+1

E (r, a; g).

Definition 7([7], [8]). Let f, g share the value a IM. We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ
from the corresponding a-points of g. Clearly N∗(r, a; f, g) = N∗(r, a; g, f) and
N∗(r, a; f, g) = NL(r, a; f) +NL(r, a; g).

In 1998, 2003 H. X. Yi[12, 14] improved some results of Ueda[11], G.Brosch[4]
and Lahiri[7] in the following theorems:

Theorem A([12]). Let f, g share 0, 1,∞ CM . If

(1) lim sup
r→∞

N(r, 0; f |= 1) +N(r,∞; f |= 1)− 1
2m(r, 1; g)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.
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Theorem B([14]). Let f, g share (0, 1), (1, 5), (∞, 0). If

(2) lim sup
r→∞

N(r, 0; f |= 1) + 3N(r,∞; f)− 1
2m(r, 1; g)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.

Theorem C([14]). Let f, g share (0, 1), (1, 3), (∞, 0). If

(3) lim sup
r→∞

N(r, 0; f |= 1) + 4N(r,∞; f)− 1
2m(r, 1; g)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.

Theorem D([14]). et f, g share (0, 1), (1, 6), (∞, 2). If

(4) lim sup
r→∞

N(r, 0; f |= 1) +N(r,∞; f |= 1)− 1
2m(r, 1; g)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.

In 2007 Banerjee[2] improved Theorem B and Theorem C by weakening the
conditions (2) and (3) respectively as follows.

Theorem E. Let f, g share (0, 1), (1, 5), (∞, 0). If

(5) lim sup
r→∞

N(r, 0; f |= 1) + 3N(r,∞; f)− 1
2m(r, 1; g)− 1

2NL(r, 1; g)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.

Theorem F. Let f, g share (0, 1), (1, 3), (∞, 0). If

(6) lim sup
r→∞

N(r, 0; f |= 1) + 4N(r,∞; f)− 1
2m(r, 1; g)− 1

2NL(r, 1; g)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.

Chen, Shen and Lin proved the following results that improved Theorem B,
Theorem C and Theorem D in a manner different from Banerjee’s.

Theorem G([5]). Let f and g be two nonconstant meromorphic functions sharing
(0, 1), (1,m), (∞, 0) where m(≥ 2) is an integer. If

(7) N(r, 0; f |= 1) +
2(m+ 1)

m− 1
N(r,∞; f)− 1

2
m(r, 1; g) < (

1

2
+ 0(1))T (r, f)

for r ̸∈ I then either f ≡ g or fg ≡ 1.
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Theorem H([5]). Let f and g be two nonconstant meromorphic functions sharing
(0, 1), (1,m), (∞, k) where m and k are positive integers or infinity satisfying (m−
1)(km− 1) > (1 +m)2. If

(8) N(r, 0; f |= 1) +N(r,∞; f |= 1)− 1

2
m(r, 1; g) < (

1

2
+ 0(1))T (r, f)

for r ̸∈ I then either f ≡ g or fg ≡ 1.

Very recently Banerjee proved the following theorem improving all previous
results.

Theorem I([3]). Let f and g be two nonconstant meromorphic functions sharing
(0, 1), (1,m), (∞, k) where m(≥ 2) is an integer. If

N(r, 0; f |= 1) +N(r,∞; f) +
m+ 3

m− 1
N(r,∞; f |≥ k + 1)

− 1

2
m(r, 1; g)− 1

2
NL(r, 1; g) < (

1

2
+ 0(1))T (r, f)

(9)

for r ̸∈ I then either f ≡ g or fg ≡ 1.

Improving a result of H. X. Yi[12], Lahiri[10] proved the following.

Theorem J. Let f, g share (0, 0), (1, 2), (∞, 0). If

(10) lim sup
r→∞

3N(r, 0; f) + 3N(r,∞; f)−m(r, 1; g)

T (r, f)
< 1

then either f ≡ g or fg ≡ 1.

In 2006 Banerjee[1] improved the above result by weakening the condition (10)
in the Theorem K and proved some supplementary results.

Theorem K. Let f, g share (0, 0), (1, 2), (∞, 0). If

(11) lim sup
r→∞

3N(r, 0; f)+3N(r,∞; f)−N
(3

E (r, 1; f)−NL(r, 1; g)−m(r, 1; g)

T (r, f)
<1

then either f ≡ g or fg ≡ 1.

Theorem L. Let f, g share (0, 0), (1, 1), (∞,∞). If

(12) lim sup
r→∞

3N(r, 0; f) + 2N(r,∞; f) +Nf>2(r, 1; g)−m(r, 1; g)

T (r, f)
< 1

then either f ≡ g or fg ≡ 1.
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Theorem M. Let f, g share (0, 0), (1, 1), (∞, 0). If

(13) lim sup
r→∞

3N(r, 0; f) + 3N(r,∞; f) +Nf>2(r, 1; g)−m(r, 1; g)

T (r, f)
< 1

then either f ≡ g or fg ≡ 1.

Theorem N. Let f, g share (0, 0), (1, 0), (∞, 0). If

(14) lim sup
r→∞

3N(r, 0; f) + 3N(r,∞; f) +N⊗(r, 1; f, g)−m(r, 1; g)

T (r, f)
< 1

then either f ≡ g or fg ≡ 1, where N⊗(r, 1; f, g) = NL(r, 1; f) + Nf>1(r, 1; g) +

Ng>1(r, 1; f).

Theorem O. Let f, g share (0, 0), (1, 0), (∞,∞). If

(15) lim sup
r→∞

3N(r, 0; f) + 2N(r,∞; f) +N⊗(r, 1; f, g)−m(r, 1; g)

T (r, f)
< 1

then either f ≡ g or fg ≡ 1, where N⊗(r, 1; f, g) = NL(r, 1; f) + Nf>1(r, 1; g) +

Ng>1(r, 1; f).

The theorems stated so far evoke the following questions in our mind:
1. Is it possible to reduce the nature of sharing of the value 1 in Theorem I, in
particular what happens if f, g share the value (1, 1)?
2. Is it possible to weaken the conditions (11), (12), (13), (14), (15) in Theorems
K, L, M, N, O, respectively?

Motivated by these questions we state our main results as follows.

Theorem 1. Let f and g be two nonconstant meromorphic functions sharing (0, 1),
(1, 1), (∞, k). If

N(r, 0; f |= 1) +N(r,∞; f) + 5N(r,∞; f |≥ k + 1) + 2[Ng>2(r, 1; f)

+Nf>2(r, 1; g)]−
1

2
m(r, 1; g)− 1

2
NL(r, 1; g)−

1

2
N

(3

E (r, 1; f)

< (
1

2
+ 0(1))T (r, f)

(16)

for r ̸∈ I then either f ≡ g or fg ≡ 1.

Theorem 2. Let f and g be two nonconstant meromorphic functions sharing (0, 1),
(1, 2), (∞, k). If

N(r, 0; f |= 1) +N(r,∞; f) + 5N(r,∞; f |≥ k + 1)+

− 1

2
m(r, 1; g)− 1

2
NL(r, 1; g)−

1

2
N

(3

E (r, 1; f)

< (
1

2
+ 0(1))T (r, f)

(17)

for r ̸∈ I then either f ≡ g or fg ≡ 1.
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Theorem 3. Let f, g share (0, 0), (1, 2), (∞, 0). If

3N(r, 0; f) + 3N(r,∞; f)−NL(r, 1; g)−m(r, 1; g)−N
(1

E (r, 0; f)

−N
(1

E (r,∞; f)−N
(3

E (r, 1; f) < (1 + o(1))T (r, f)

(18)

for r ̸∈ I then either f ≡ g or fg ≡ 1.

Theorem 4. Let f, g share (0, 0), (1, 1), (∞,∞). If

3N(r, 0; f) + 2N(r,∞; f) +Nf>2(r, 1; g)−m(r, 1; g)−N
(1

E (r, 0; f)

−N
(3

E (r, 1; f) < (1 + o(1))T (r, f)

(19)

for r ̸∈ I then either f ≡ g or fg ≡ 1.

Theorem 5. Let f, g share (0, 0), (1, 1), (∞, 0). If

3N(r, 0; f) + 3N(r,∞; f) +Nf>2(r, 1; g)−m(r, 1; g)−N
(1

E (r, 0; f)

−N
(1

E (r,∞; f)−N
(3

E (r, 1; f) < (1 + o(1))T (r, f)

(20)

for r ̸∈ I then either f ≡ g or fg ≡ 1.

Theorem 6. Let f, g share (0, 0), (1, 0), (∞, 0). If

3N(r, 0; f) + 3N(r,∞; f) +N⊗(r, 1; f, g)−m(r, 1; g)−N
(1

E (r, 0; f)

−N
(1

E (r,∞; f)−N
(3

E (r, 1; f) < (1 + o(1))T (r, f)

(21)

for r ̸∈ I then either f ≡ g or fg ≡ 1, where
N⊗(r, 1; f, g) = NL(r, 1; f) +Nf>1(r, 1; g) +Ng>1(r, 1; f).

Theorem 7. Let f, g share (0, 0), (1, 0), (∞,∞). If

3N(r, 0; f) + 2N(r,∞; f) +N⊗(r, 1; f, g)−m(r, 1; g)−N
(1

E (r, 0; f)

−N
(3

E (r, 1; f) < (1 + o(1))T (r, f)

(22)

for r ̸∈ I then either f ≡ g or fg ≡ 1, where N⊗(r, 1; f, g) = NL(r, 1; f) +

Nf>1(r, 1; g) +Ng>1(r, 1; f).

Remark. (i) Theorem 1 answers the question 1 raised above.
(ii) Theorem 2 improves Theorem I when m = 2.
(iii) Theorems 3, 4, 5, 6, 7 improve Theorems K, L, M, N, O respectively under
weaker conditions as is asked in question 2 above.
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2. Lemmas

In this section we present some lemmas which will be required to establish our
theorems. In the lemmas several times we use the function H defined by H =
f ′′

f ′ − 2f ′

f−1 − g′′

g′ + 2g′

g−1 .

Lemma 1([7]). If f and g share (0, 0), (1, 0), (∞, 0) then
(i) T (r, f) ≤ 3T (r, g) + S(r, f)
(ii) T (r, g) ≤ 3T (r, f) + S(r, g).

Lemma 1 shows that S(r, f) = S(r, g) and we denote their common value by
S(r).

Lemma 2. If f and g share (1, 1) then

N(r, 1; g)−N(r, 1; g)

≥ 2NL(r, 1; g) +NL(r, 1; f) +N
(2

E (r, 1; f) +N
(3

E (r, 1; f) + [Nf<4(r, 1; g)

+ 2Nf<5(r, 1; g) + 3Nf<6(r, 1; g) + ...] + [Nf>3(r, 1; g) + 2Nf>4(r, 1; g)

+ 3Nf>5(r, 1; g) + ...].

Proof. Let z0 be a 1-point of f and g of respective multiplicities p and q. We
denote by N1(r), N2(r) and N3(r) the counting functions of those 1-points of f and
g when 2 ≤ q < p, 2 ≤ q = p and 2 ≤ p < q respectively where each point in these
counting functions is counted q − 2 times. Since f, g share (1, 1) we have

N(r, 1; g)−N(r, 1; g)

= N
(2

E (r, 1; f) +N2(r) +NL(r, 1; g) +N3(r) +NL(r, 1; f) +N1(r).

Now N3(r) > NL(r, 1; g) + [Nf<4(r, 1; g) + 2Nf<5(r, 1; g) + 3Nf<6(r, 1; g) + ...],

N2(r) > N
(3

E (r, 1; f) and N1(r) > [Nf>3(r, 1; g) + 2Nf>4(r, 1; g) + ....] the lemma
follows from above. 2

Lemma 3. If f and g share (1, 0) then

N(r, 1; g)−N(r, 1; g)

≥ 2NL(r, 1; g) +NL(r, 1; f) +N
(2

E (r, 1; f) +N
(3

E (r, 1; f)−Nf>1(r, 1; g)

−Ng>1(r, 1; f).

Proof. Let z0 be a 1-point of f and g of respective multiplicities p and q. We
denote by N1(r), N2(r) and N3(r)the counting functions of those 1-points of f and
g when 1 ≤ q < p, 2 ≤ q = p and 1 ≤ p < q respectively where in the first counting
function each point is counted q − 1 times and in the remaining two q − 2 times.

Then observing that N2(r) ≥ N
(3

E (r, 1; f) the proof follows in the line of proof of
Lemma 2.4[1]. 2
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Lemma 4([8]). If f and g share (1, 1) and H ̸≡ 0 then

N(r, 1; f |= 1) = N(r, 1; g |= 1) ≤ N(r,H) + S(r, f) + S(r, g).

Lemma 5([13], [15]). If f and g share (1, 0) and H ̸≡ 0 then

N
1)
E (r, 1; f) ≤ N(r,H) + S(r, f) + S(r, g),

where N
1)
E (r, 1; f) denotes the counting function of simple 1-points of f and g.

Lemma 6([10]). If f and g share (0, 0), (1, 0), (∞, 0) and H ̸≡ 0 then

N(r,H) ≤ N∗(r, 0; f, g)+N∗(r, 1; f, g)+N∗(r,∞; f, g)+N0(r, 0; f
′)+N0(r, 0; g

′),

where N0(r, 0; f
′) is the reduced counting function of those zeros of f ′ which are not

the zeros of f(f − 1) and N0(r, 0; g
′) is similarly defined.

Lemma 7. If f and g share (0, 0) ,(1, 1), (∞, k) and H ̸≡ 0 then

N(r, 1; f) +N(r, 1; g)

≤ N∗(r, 0; f, g) +N∗(r,∞; f, g) +N0(r, 0; f
′) +N0(r, 0; g

′)

+ T (r, g)−m(r, 1; g)−NL(r, 1; g)−N
(3

E (r, 1; f) +Ng>2(r, 1; f) +Nf>2(r, 1; g),

where N0(r, 0; f
′) and N0(r, 0; g

′) are same as Lemma [6].

Proof. We have by Lemmas 4, 6 and 2,

N(r, 1; f) +N(r, 1; g)

≤ N(r,H) +N(r, 1; g) +N(r, 1; f |≥ 2)

≤ N∗(r, 0; f, g) +N∗(r, 1; f, g) +N∗(r,∞; f, g) +N0(r, 0; f
′) +N0(r, 0; g

′)

+N(r, 1; g) +N(r, 1; f |≥ 2)

≤ N∗(r, 0; f, g) +N∗(r, 1; f, g) +N∗(r,∞; f, g) +N0(r, 0; f
′) +N0(r, 0; g

′)

+N(r, 1; g)− 2NL(r, 1; g)−NL(r, 1; f)−N
(2

E (r, 1; f)−N
(3

E (r, 1; f)

− [Nf<4(r, 1; g) + 2Nf<5(r, 1; g) + 3Nf<6(r, 1; g) + ...]

− [Nf>3(r, 1; g) + 2Nf>4(r, 1; g) + ....] +N(r, 1; f |≥ 2).

Now we observe that N(r, 1; f |≥ 2) = NL(r, 1; g) +NL(r, 1; f) +N
(2

E (r, 1; f),
and NL(r, 1; g)−[Nf<4(r, 1; g)+2Nf<5(r, 1; g)+3Nf<6(r, 1; g)+...] ≤ Ng>2(r, 1; f)
and NL(r, 1; f)− [Nf>3(r, 1; g) + 2Nf>4(r, 1; g) + ....] ≤ Nf>2(r, 1; g).
Thus from above we obtain

N(r, 1; f) +N(r, 1; g)

≤ N∗(r, 0; f, g) +N∗(r,∞; f, g)−NL(r, 1; g) + T (r, g)−m(r, 1; g)

+N0(r, 0; g
′) +N0(r, 0; f

′)−N
(3

E (r, 1; f) +Ng>2(r, 1; f) +Nf>2(r, 1; g).

This completes the proof. 2
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Lemma 8. If f and g share (0, 1), (1, 1), (∞, k), then
(i) N∗(r, 0; f, g) ≤ N(r, 0; f |≥ 2) ≤ N∗(r, 1; f, g) +N(r,∞; f |≥ k + 1),
(ii) N(r, 1, f |> 2, g |> 2) ≤ 2N(r,∞; f |≥ k + 1).

Proof. Let ϕ1 = f ′

f−1 − g′

g−1 , ϕ2 = f ′

f − g′

g and ϕ3 = ϕ1 − ϕ2. Since H ̸≡ 0, we have
f ̸≡ g and hence it follows that ϕi ̸≡ 0 for i = 1, 2, 3. Now

N∗(r, 0; f, g) ≤ N(r, 0; f |≥ 2)

≤ N(r, 0;ϕ1)

≤ T (r, f) +O(1) = N(r,∞;ϕ1) + S(r)

≤ N∗(r, 1; f, g) +N(r,∞; f |≥ k + 1) + S(r)

which is (i).
Again

N(r, 1; f |≥ 2) +N(r, 1; f |> 2, g |> 2) ≤ N(r, 0;ϕ2) ≤ T (r, ϕ2) + S(r)

= N(r,∞;ϕ2) + S(r)

= N(r, 0; f |≥ 2) +N(r,∞; f |≥ k + 1).

Hence from above we have

N(r, 1; f |≥ 2) +N(r, 1; f |> 2, g |> 2)

≤ N∗(r, 1; f, g) +N(r,∞; f |≥ k + 1) +N(r,∞; f |≥ k + 1)

≤ N(r, 1; f |≥ 2) + 2N(r,∞; f |≥ k + 1),

which yields (ii). 2

Lemma 9. If f and g share (0, 1), (1, 1), (∞, k) and H ̸≡ 0, then
T (r, f) ≤ 2N(r, 0; f |= 1) + 2N(r,∞; f) + 10N(r,∞; f |≥ k + 1)

+ 4[Ng>2(r, 1; f) +Nf>2(r, 1; g)]−m(r, 1; g)−NL(r, 1; g)−N
(3

E (r, 1; f) + S(r).

Proof. We denote by N0(r, o; f
′) the counting function of those zeros of f ′ which

are not the zeros of f(f − 1). Similarly we define N0(r, 0; g
′). Then by the Second
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Fundamental Theorem and Lemma 7 we have

T (r, f) + T (r, g)

≤ N(r, 0; f) +N(r,∞; f) +N(r, 1; f) +N(r, 0; g) +N(r,∞; g) +N(r, 1; g)

−N0(r, 0; g
′)−N0(r, o; f

′) + S(r)

≤ 2N(r, 0; f |= 1) + 2N(r, 0; f |≥ 2) + 2N(r,∞; f) + [N∗(r, 0; f, g)

+N∗(r,∞; f, g)−NL(r, 1; g)−N
(3

E (r, 1; f)+N0(r, 0; g
′) +N0(r, 0; f

′) + T (r, g)

−m(r, 1; g) +Ng>2(r, 1; f) +Nf>2(r, 1; g)]−N0(r, 0; g
′)−N0(r, o; f

′) + S(r)

≤ 2N(r, 0; f |= 1) + 2N(r,∞; f) + 2N(r, 0; f |≥ 2) +N∗(r, 0; f, g)

+N(r,∞; f |≥ k + 1)−NL(r, 1; g)−N
(3

E (r, 1; f) + T (r, g)−m(r, 1; g)

+Ng>2(r, 1; f) +Nf>2(r, 1; g) + S(r)

≤ 2N(r, 0; f |= 1) + 2N(r,∞; f) + 3N(r, 0; f |≥ 2) +N(r,∞; f |≥ k + 1)

−NL(r, 1; g)−N
(3

E (r, 1; f) + T (r, g)−m(r, 1; g) +Ng>2(r, 1; f)

+Nf>2(r, 1; g) + S(r).

Now using (i) of Lemma 8 we obtain

T (r, f) + T (r, g)

≤ 2N(r, 0; f |= 1) + 2N(r,∞; f) + 3[N∗(r, 1; f, g) +N(r,∞; f |≥ k + 1)]

+N(r,∞; f |≥ k + 1)−NL(r, 1; g)−N
(3

E (r, 1; f) + T (r, g)−m(r, 1; g)

+Ng>2(r, 1; f) +Nf>2(r, 1; g) + S(r).

Thus we obtain from above using (ii) of Lemma 8

T (r, f)

≤ 2N(r, 0; f |= 1) + 2N(r,∞; f) + 4N(r,∞; f |≥ k + 1) +Ng>2(r, 1; f)

+Nf>2(r, 1; g) + 3[Ng>2(r, 1; f) +Nf>2(r, 1; g) +N(r, 1; f |> 2, g |> 2)]

−m(r, 1; g)−NL(r, 1; g)−N
(3

E (r, 1; f) + S(r)

≤ 2N(r, 0; f |= 1) + 2N(r,∞; f) + 4N(r,∞; f |≥ k + 1) + 6N(r,∞; f |≥ k + 1)

+ 4Ng>2(r, 1; f) + 4Nf>2(r, 1; g)−m(r, 1; g)−NL(r, 1; g)−N
(3

E (r, 1; f) + S(r)

= 2N(r, 0; f |= 1) + 2N(r,∞; f) + 10N(r,∞; f |≥ k + 1) + 4Ng>2(r, 1; f)

+ 4Nf>2(r, 1; g)−m(r, 1; g)−NL(r, 1; g)−N
(3

E (r, 1; f) + S(r).

This proves the lemma. 2
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Lemma 10. If f and g share (0, 0), (1, 0), (∞, 0) and H ̸≡ 0, then
T (r, f)
≤ 3N(r, 0; f) + 3N(r,∞; f) + [Ng>1(r, 1; f) +Nf>1(r, 1; g)] +NL(r, 1; f)

−N
(1

E (r, 1; f)−N
(1

E (r,∞; f)−m(r, 1; g)−N
(3

E (r, 1; f) + S(r).

Proof. By the Second Fundamental Theorem we have

T (r, f) + T (r, g)

≤N(r, 0; f)+N(r,∞; f)+N(r, 1; f)+N(r, 0; g)+N(r,∞; g)+N(r, 1; g)−N0(r, 0; g
′)

−N0(r, o; f
′) + S(r) [where N0(r, 0; g

′), N0(r, o; f
′) are same as Lemma 9]

=2N(r, 0; f)+2N(r,∞; f)+N(r, 1; f)+N(r, 1; g)−N0(r, 0; g
′)−N0(r, o; f

′)+S(r).

Now by Lemma 3, 5, and 6 we see that

N(r, 1; f) +N(r, 1; g)

= NL(r, 1; f) +NL(r, 1; g) +N
1)

E (r, 1; f) +N
(2

E (r, 1; f) +N(r, 1; g)

≤ N
1)

E (r, 1; f) +NL(r, 1; f) +NL(r, 1; g) +N
(2

E (r, 1; f) +N(r, 1; g)−N
(2

E (r, 1; f)

−N
(3

E (r, 1; f)−NL(r, 1; f)− 2NL(r, 1; g) + [Ng>1(r, 1; f) +Nf>1(r, 1; g)]

≤ N(r,H) + T (r, g)−m(r, 1; g)−NL(r, 1; g)−N
(3

E (r, 1; f)

+ [Ng>1(r, 1; f) +Nf>1(r, 1; g)]

≤ N∗(r, 0; f, g) +N∗(r,∞; f, g) +N∗(r, 1; f, g) +N0(r, 0; f
′) +N0(r, 0; g

′)

+ T (r, g)−m(r, 1; g)−NL(r, 1; g)−N
(3

E (r, 1; f) + [Ng>1(r, 1; f) +Nf>1(r, 1; g)]

= N(r, 0; f)−N
(1

E (r, 0; f) +N(r,∞; f)−N
(1

E (r,∞; f) +NL(r, 1; f) + T (r, g)

+N0(r, 0; f
′) +N0(r, 0; g

′)−m(r, 1; g)−N
(3

E (r, 1; f)

+ [Ng>1(r, 1; f) +Nf>1(r, 1; g)].

Therefore from above we obtain

T (r, f) + T (r, g)

≤ 3N(r, 0; f) + 3N(r,∞; f) +NL(r, 1; f) + T (r, g)−m(r, 1; g)−N
(1

E (r, 0; f)

−N
(1

E (r,∞; f)−N
(3

E (r, 1; f) + [Ng>1(r, 1; f) +Nf>1(r, 1; g)]

and hence,

T (r, f)

≤ 3N(r, 0; f) + 3N(r,∞; f) +NL(r, 1; f)−m(r, 1; g)−N
(1

E (r, 0; f)−N
(1

E (r,∞; f)

−N
(3

E (r, 1; f) + [Ng>1(r, 1; f) +Nf>1(r, 1; g)].

This proves the lemma. 2
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Lemma 11([12]). If f and g share (0, 0), (1, 0), (∞, 0) and H ≡ 0, then f and g
share (0,∞), (1,∞), (∞,∞).

Lemma 12([9]). If f and g be two nonconstant meromorphic functions sharing
(0,∞), (1,∞), (∞,∞) and f ≡ g, then

N(r, 0; f |≥ 2) +N(r, 1; f |≥ 2) +N(r,∞; f |≥ 2) = S(r).

Lemma 13([10], [14]). Let f and g be two nonconstant meromorphic functions
sharing 0, 1, ∞, CM.
If

(23) lim sup
r→∞

2N(r, 0; f) + 2N(r,∞; f)−m(r, 1; g)

T (r, f)
< 1

then either f ≡ g or fg ≡ 1.

3. Proofs of the Theorems

Proof of Theorem 1 : Suppose that H ̸≡ 0. Then by Lemma 9 we obtain a
contradiction to (16). Hence H ≡ 0. Therefore by Lemma 11, f and g share
(0,∞), (1,∞), (∞,∞). Therefore by Lemma 12

Ng>2(r, 1; f) +Nf>2(r, 1; g) +N(r,∞; f |≥ 2) +NL(r, 1; g) +N
(2

E (r, 1; f) = S(r).

Now by Theorem A our theorem follows. 2

Proof of Theorem 2 : Since f and g share (1, 2) it follows that

Ng>2(r, 1; f) +Nf>2(r, 1; g) = S(r).

Again since f , g share (1, 2), f , g share (1, 1) and Theorem 2 follows from Theorem
1. 2

Proof of Theorem 6 : Suppose that H ̸≡ 0. Then by Lemma 10 we obtain a contra-
diction of (21). Therefore H ≡ 0 and hence by Lemma 11, f and g share (0,∞),

(1,∞), (∞,∞). Therefore, N
(1

E (r,∞; f) = N(r,∞; f) and N
(1

E (r, 0; f) = N(r, 0; f).

Then by Lemma 12 we obtain N⊗(r, 1; f, g) + N
(3

E (r, 1; f) = S(r). Thus by (21)
and Lemma 13 the proof follows. This completes the proof. 2

Proof of Theorem 7 : Since f, g share (∞,∞), we see that N
(1

E (r,∞; f) = N(r,∞; f)
and therefore the theorem follows easily from Theorem 6, remembering that sharing
(∞,∞) implies sharing (∞, 0). This proves the theorem. 2
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Proof of Theorem 5 : Suppose that H ̸≡ 0. Then by the Second Fundamental
Theorem and by Lemma 7 with k = 0 we obtain

T (r, f) + T (r, g)

≤ 2N(r, 0; f) + 2N(r,∞; f) +N∗(r, 0; f, g) +N∗(r,∞; f, g) +N0(r, 0; f
′)

+N0(r, 0; g
′) + T (r, g)−m(r, 1; g)−NL(r, 1; g)−N

(3

E (r, 1; f)

+Ng>2(r, 1; f) +Nf>2(r, 1; g)−N0(r, 0; g
′)−N0(r, o; f

′)

+ S(r), [where N0(r, 0; g
′), N0(r, o; f

′) are same as Lemma 9]

≤ 3N(r, 0; f) + 3N(r,∞; f) + T (r, g)−m(r, 1; g)−N
(1

E (r, 0; f)−N
(1

E (r,∞; f)

−N
(3

E (r, 1; f) +Nf>2(r, 1; g) + S(r).

Therefore,

T (r, f)

≤ 3N(r, 0; f) + 3N(r,∞; f)−m(r, 1; g)−N
(1

E (r, 0; f)−N
(1

E (r,∞; f)−N
(3

E (r, 1; f)

+Nf>2(r, 1; g) + S(r),

which contradicts (20). Hence H ≡ 0 and the theorem follows from Lemmas 11, 12
and 13. This completes the proof. 2

Proof of Theorem 4 : Since f, g share (∞,∞), N
(1

E (r,∞; f) = N(r,∞; f) and our
theorem follows easily from Theorem 5. This proves the theorem. 2

Proof of Theorem 3 : Suppose that H ̸≡ 0. Since f, g share (1, 2),

Nf>2(r, 1; g) +Ng>2(r, 1; f) = S(r).

Therefore proceeding as in the proof of Theorem 5, we obtain

T (r, f)

≤ 3N(r, 0; f) + 3N(r,∞; f)−m(r, 1; g)−N
(1

E (r, 0; f)−N
(1

E (r,∞; f)−N
(3

E (r, 1; f)

−NL(r, 1; g) + S(r),

which contradicts (18). Hence H ≡ 0 and the theorem follows from Lemmas 11, 12
and 13. This completes the proof. 2
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