Ostrowski's Type Inequalities for (α, m) – Convex Functions

Muhamet Emin Özdemir, Havva Kavurmacı and Erhan Set* Atatürk University, K. K. Education Faculty, Department of Mathematics, 25240, Campus, Erzurum, Turkey

 $e ext{-}mail$: emos@atauni.edu.tr, havva.kvrmc@yahoo.com and erhanset@yahoo.com

ABSTRACT. In this paper, we establish new inequalities of Ostrowski's type for functions whose derivatives in absolute value are (α, m) -convex.

1. Introduction

Let $f: I \subset [0, \infty] \to \mathbb{R}$ be a differentiable mapping on I° , the interior of the interval I, such that $f' \in L[a, b]$ where $a, b \in I$ with a < b. If $|f'(x)| \leq M$, then the following inequality holds (see [1]).

(1.1)
$$\left| f(x) - \frac{1}{b-a} \int_a^b f(u) du \right| \le \frac{M}{b-a} \left[\frac{(x-a)^2 + (b-x)^2}{2} \right].$$

This inequality is well known in the literature as the *Ostrowski inequality*. For some results which generalize, improve and extend the inequality (1.1) see ([1], [4], [6], [8]) and the references therein.

In [9], G. Toader defined m-convexity as the following:

Definition 1. The function $f:[0,b] \to \mathbb{R}$, b > 0, is said to be m-convex, where $m \in [0,1]$, if we have

$$f(tx + m(1-t)y) \le tf(x) + m(1-t)f(y)$$

for all $x, y \in [0, b]$ and $t \in [0, 1]$. Denote by $K_m(b)$ the set of the m-convex functions on [0, b] for which $f(0) \leq 0$.

In [7], V.G. Miheşan defined (α, m) – convexity as the following :

Definition 2. The function $f:[0,b]\to\mathbb{R},\ b>0$, is said to be (α,m) -convex,

Received February 9, 2010; revised June 12, 2010; accepted September 3, 2010. 2000 Mathematics Subject Classification: 26D15.

Key words and phrases: (α, m) -Convex Function, m-Convex Function, Convex Function, Ostrowski's Inequality, Hölder's Inequality, Power Mean Inequality.

^{*} Corresponding Author.

where $(\alpha, m) \in [0, 1]^2$, if we have

$$f(tx + m(1-t)y) \le t^{\alpha} f(x) + m(1-t^{\alpha})f(y)$$

for all $x, y \in [0, b]$ and $t \in [0, 1]$.

Denote by $K_m^{\alpha}(b)$ the class of all (α, m) –convex functions on [0, b] for which $f(0) \leq 0$.

It can be easily seen that for $(\alpha, m) = (1, m)$, (α, m) –convexity reduces to m–convexity; $(\alpha, m) = (\alpha, 1)$, (α, m) –convexity reduces to α –convexity and for $(\alpha, m) = (1, 1)$, (α, m) – convexity reduces to the concept of usual convexity defined on [0, b], b > 0. For recent results and generalizations concerning (α, m) – convex functions, see ([2] and [3]).

The following theorem contains the Hadamard type integral inequality (see for example [5]).

Theorem 1. Let $f: I \subset \mathbb{R} \to \mathbb{R}$ be an M-Lipschitzian mapping on I and $a, b \in I$ with a < b. Then we have the inequality;

(1.2)
$$\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(x) dx \right| \le \frac{M(b-a)}{4}.$$

In [1], in order to prove some inequalities related to Ostrowski inequality, M. Alomari, M. Darus, S.S. Dragomir and P. Cerone used the following lemma.

Lemma 1. Let $f: I \subset \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I° where $a, b \in I$ with a < b. If $f' \in L[a, b]$, then the following equality holds:

$$f(x) - \frac{1}{b-a} \int_{a}^{b} f(u) du = \frac{(x-a)^{2}}{b-a} \int_{0}^{1} t f'(tx + (1-t)a) dt$$
$$- \frac{(b-x)^{2}}{b-a} \int_{0}^{1} t f'(tx + (1-t)b) dt$$

for each $x \in [a, b]$.

The main purpose of this paper is to establish several Ostrowski's type inequalities for functions whose derivatives in absolute value are (α, m) –convex.

2. Main results

In order to prove our results we need the following equality:

$$(2.1) \ mf(x) - \frac{1}{b-a} \int_{ma}^{mb} f(u) du = \frac{(x-ma)^2}{b-a} \int_0^1 tf'(tx+m(1-t)a) dt - \frac{(mb-x)^2}{b-a} \int_0^1 tf'(tx+m(1-t)b) dt$$

which is a special case of Lemma 1 with $ma \to a$ and $mb \to b$.

Theorem 2. Let I be an open real interval such that $[0,\infty) \subset I$ and $f: I \to \mathbb{R}$ be a differentiable function on I such that $f' \in L([ma,mb])$, where $ma,mb \in I$ with a < b. If $|f'|^q$ is $(\alpha,m) - convex$ on [ma,mb] for $(\alpha,m) \in [0,1] \times (0,1]$, q > 1, $\frac{1}{p} + \frac{1}{q} = 1$ and $|f'(x)| \le M$, $x \in [ma,mb]$, then the following inequality holds:

$$\left| mf(x) - \frac{1}{b-a} \int_{ma}^{mb} f(u) du \right| \le M \left(\frac{1}{p+1} \right)^{\frac{1}{p}} \left(\frac{\alpha m+1}{\alpha+1} \right)^{\frac{1}{q}} \frac{(x-ma)^2 + (mb-x)^2}{b-a}$$

for each $x \in [ma, mb]$.

Proof. From (2.1) and using the Hölder's inequality for q > 1, we have

$$\left| mf(x) - \frac{1}{b-a} \int_{ma}^{mb} f(u) du \right|$$

$$\leq \frac{(x-ma)^2}{b-a} \int_0^1 t |f'(tx+m(1-t)a)| dt$$

$$+ \frac{(mb-x)^2}{b-a} \int_0^1 t |f'(tx+m(1-t)b)| dt$$

$$\leq \frac{(x-ma)^2}{b-a} \left(\int_0^1 t^p dt \right)^{\frac{1}{p}} \left(\int_0^1 |f'(tx+m(1-t)a)|^q dt \right)^{\frac{1}{q}}$$

$$+ \frac{(mb-x)^2}{b-a} \left(\int_0^1 t^p dt \right)^{\frac{1}{p}} \left(\int_0^1 |f'(tx+m(1-t)b)|^q dt \right)^{\frac{1}{q}} .$$

Since $|f'|^q$ is (α, m) -convex and $|f'(x)| \leq M$, then we have

$$\int_{0}^{1} \left| f'\left(tx + m\left(1 - t\right)a\right) \right|^{q} dt$$

$$\leq \int_{0}^{1} \left[t^{\alpha} \left| f'(x) \right|^{q} + m\left(1 - t^{\alpha}\right) \left| f'(a) \right|^{q} \right] dt$$

$$\leq \frac{M^{q}}{\alpha + 1} \left(1 + \alpha m \right)$$

and

$$\int_{0}^{1} \left| f'\left(tx + m\left(1 - t\right)b\right) \right|^{q} dt$$

$$\leq \int_{0}^{1} \left[t^{\alpha} \left| f'(x) \right|^{q} + m\left(1 - t^{\alpha}\right) \left| f'(b) \right|^{q} \right] dt$$

$$\leq \frac{M^{q}}{\alpha + 1} \left(1 + \alpha m \right).$$

Therefore, we have

$$\begin{split} & \left| mf(x) - \frac{1}{b-a} \int_{ma}^{mb} f(u) du \right| \\ & \leq \frac{(x-ma)^2}{b-a} \left(\frac{1}{p+1} \right)^{\frac{1}{p}} \left(\frac{M^q}{\alpha+1} \left(1 + \alpha m \right) \right)^{\frac{1}{q}} \\ & + \frac{(mb-x)^2}{b-a} \left(\frac{1}{p+1} \right)^{\frac{1}{p}} \left(\frac{M^q}{\alpha+1} \left(1 + \alpha m \right) \right)^{\frac{1}{q}} \\ & = M \left(\frac{1}{p+1} \right)^{\frac{1}{p}} \left(\frac{1+\alpha m}{\alpha+1} \right)^{\frac{1}{q}} \frac{(x-ma)^2 + (mb-x)^2}{b-a}. \end{split}$$

This completes the proof.

Remark 1. Since for $p \in (1, \infty)$ we have

$$\frac{1}{2} \le \left(\frac{1}{p+1}\right)^{\frac{1}{p}} \le 1,$$

if in Theorem 2 we put m = 1, we obtain

(2.2)
$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(u) du \right| \le M \left[\frac{(x-a)^{2} + (b-x)^{2}}{b-a} \right].$$

Now, if we choose in (2.2), $x = \frac{a+b}{2}$, we get

$$\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(u) du \right| \leq \frac{M(b-a)}{2}.$$

Theorem 3. Let I be an open real interval such that $[0,\infty) \subset I$ and $f: I \to \mathbb{R}$ be a differentiable function on I such that $f' \in L([ma, mb])$, where $ma, mb \in I$. If $|f'|^q$ is (α, m) -convex on [ma, mb] for $(\alpha, m) \in [0, 1] \times (0, 1]$ and $|f'(x)| \leq M$, $q \in [1, \infty)$, $x \in [ma, mb]$, then the following inequality holds:

$$\left| mf(x) - \frac{1}{b-a} \int_{ma}^{mb} f(u) du \right| \le M \left(\frac{2+\alpha m}{\alpha+2} \right)^{\frac{1}{q}} \frac{(x-ma)^2 + (mb-x)^2}{2(b-a)}$$

for each $x \in [ma, mb]$.

Proof. Suppose that q = 1. From (2.1) we have

$$\left| mf(x) - \frac{1}{b-a} \int_{ma}^{mb} f(u) du \right|$$

$$\leq \frac{(x-ma)^2}{b-a} \int_0^1 t \left| f'(tx+m(1-t)a) \right| dt$$

$$+ \frac{(mb-x)^2}{b-a} \int_0^1 t \left| f'(tx+m(1-t)b) \right| dt.$$

Since |f'| is (α, m) -convex on [ma, mb] we know that for any $t \in [0, 1]$

$$|f'(tx + m(1 - t)y)| \le t^{\alpha} |f'(x)| + m(1 - t^{\alpha}) |f'(y)|$$

so

$$\left| mf(x) - \frac{1}{b-a} \int_{ma}^{mb} f(u) du \right|$$

$$\leq \frac{(x-ma)^2}{b-a} \int_0^1 t \left[t^{\alpha} |f'(x)| + m \left(1 - t^{\alpha} \right) |f'(a)| \right] dt$$

$$+ \frac{(mb-x)^2}{b-a} \int_0^1 t \left[t^{\alpha} |f'(x)| + m \left(1 - t^{\alpha} \right) |f'(b)| \right] dt$$

$$= \frac{(x-ma)^2}{b-a} \int_0^1 \left[t^{\alpha+1} |f'(x)| + m \left(t - t^{\alpha+1} \right) |f'(a)| \right] dt$$

$$+ \frac{(mb-x)^2}{b-a} \int_0^1 \left[t^{\alpha+1} |f'(x)| + m \left(t - t^{\alpha+1} \right) |f'(b)| \right] dt$$

$$\leq \frac{(x-ma)^2}{b-a} \frac{M}{\alpha+2} \left[1 + \frac{\alpha m}{2} \right]$$

$$+ \frac{(mb-x)^2}{b-a} \frac{M}{\alpha+2} \left[1 + \frac{\alpha m}{2} \right]$$

$$= \left(\frac{2+\alpha m}{\alpha+2} \right) \frac{M}{b-a} \left[\frac{(x-ma)^2 + (mb-x)^2}{2} \right] ,$$

where we have used the fact that

$$\int_0^1 t^{\alpha+1} dt = \frac{1}{\alpha+2}$$

and

$$\int_{0}^{1} \left(t - t^{\alpha + 1}\right) dt = \frac{\alpha}{2\left(\alpha + 2\right)}.$$

The proof is completed for this case. Suppose now that q > 1. From (2.1) and using the well-known power-mean inequality, we obtain

$$\left| mf(x) - \frac{1}{b-a} \int_{ma}^{mb} f(u) du \right|$$

$$\leq \frac{(x-ma)^2}{b-a} \int_0^1 t |f'(tx+m(1-t)a)| dt$$

$$+ \frac{(mb-x)^2}{b-a} \int_0^1 t |f'(tx+m(1-t)b)| dt$$

$$\leq \frac{(x-ma)^2}{b-a} \left(\int_0^1 t dt \right)^{1-\frac{1}{q}} \left(\int_0^1 t |f'(tx+m(1-t)a)|^q dt \right)^{\frac{1}{q}}$$

$$+ \frac{(mb-x)^2}{b-a} \left(\int_0^1 t dt \right)^{1-\frac{1}{q}} \left(\int_0^1 t |f'(tx+m(1-t)b)|^q dt \right)^{\frac{1}{q}}.$$

Since $|f'|^q$ is (α, m) –convex on [ma, mb], we know that for every $t \in [0, 1]$

$$|f'(tx + m(1 - t)y)|^q \le t^{\alpha} |f'(x)|^q + m(1 - t^{\alpha}) |f'(y)|^q$$

so we obtain

$$\int_{0}^{1} t \left| f'\left(tx + m\left(1 - t\right)a\right) \right|^{q} dt$$

$$\leq \int_{0}^{1} t \left[t^{\alpha} \left| f'(x) \right|^{q} + m\left(1 - t^{\alpha}\right) \left| f'(a) \right|^{q} \right] dt$$

$$\leq \frac{M^{q}}{\alpha + 2} \left(1 + \frac{\alpha m}{2} \right)$$

and

$$\int_{0}^{1} t \left| f'\left(tx + m\left(1 - t\right)b\right) \right|^{q} dt$$

$$\leq \int_{0}^{1} t \left[t^{\alpha} \left| f'(x) \right|^{q} + m\left(1 - t^{\alpha}\right) \left| f'(b) \right|^{q} \right] dt$$

$$\leq \frac{M^{q}}{\alpha + 2} \left(1 + \frac{\alpha m}{2} \right).$$

Therefore, we have

$$\left| mf(x) - \frac{1}{b-a} \int_{ma}^{mb} f(u) du \right|$$

$$\leq M \left(\frac{2+\alpha m}{\alpha+2} \right)^{\frac{1}{q}} \frac{(x-ma)^2 + (mb-x)^2}{2(b-a)}$$

which completes the proof.

Remark 2. Since for $p \in (1, \infty)$ we have

$$\frac{1}{2} \le \left(\frac{1}{p+1}\right)^{\frac{1}{p}} \le 1,$$

if in Theorem 3 we put m=1 and $x=\frac{a+b}{2}$, we obtain

$$\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(u) du \right| \le \frac{M \left(b-a\right)}{4}$$

which is the inequality in (1.2).

Remark 3. In Theorem 3, if we choose $(\alpha, m) = (\alpha, 1)$, we have

$$\left| f(x) - \frac{1}{b-a} \int_a^b f(u) du \right| \le \frac{M}{b-a} \left[\frac{(x-a)^2 + (b-x)^2}{2} \right]$$

which is the inequality in (1.1).

References

- [1] M. Alomari, M. Darus, S. S. Dragomir and P. Cerone, Ostrowski's inequalities for functions whose derivatives are s-convex in the second sense, RGMIA Res. Rep. Coll., 12(2009), Supplement, Article 15. [ONLINE: http://www.staff.vu.edu.au/RGMIA/v12(E).asp]
- [2] M. K. Bakula, M. E. Özdemir and J. Pečarić, *Hadamard type inequalities for* m-convex and (α, m) -convex functions, J. Inequal. Pure & Appl. Math., 9(2008), Article 96, [ONLINE: http://jipam.vu.edu.au].
- [3] M. Klaričić Bakula, J. Pečarić, and M. Ribičić, Companion inequalities to Jensen's inequality for m-convex and (α, m) -convex functions, J. Inequal. Pure & Appl. Math., 7(2006), Article 194, [ONLINE: http://jipam.vu.edu.au].
- [4] N. S. Barnett, P. Cerone, S. S. Dragomir, M. R. Pinheiro and A. Sofo, Ostrowski type inequalities for functions whose modulus of derivatives are convex and applications, RGMIA Res. Rep. Coll., 5(2)(2002), Article 1, [ONLINE: http://www.staff.vu.edu.au/RGMIA/v5n2.asp].
- [5] S. S. Dragomir, Y. J. Cho and S. S. Kim, Inequalities of Hadamard's type for Lipschitzian mappings and their applications, J. of Math. Anal. Appl., 245(2)(2000), 489-501.
- [6] S. S. Dragomir and A. Sofo, Ostrowski type inequalities for functions whose derivatives are convex, Proceedings of the 4th International Conference on Modelling and Simulation, November 11-13, 2002, Victoria University, Melbourne,

- Australia, RGMIA Res. Rep. Coll., 5(2002), Supplement, Article 30, [ONLINE: http://www.staff.vu.edu.au/RGMIA/v5(E).asp].
- [7] V. G. Miheşan, A generalization of the convexity, Seminar on Functional Equations, Approx. and Convex., Cluj-Napoca (Romania) (1993).
- [8] E. Set, M. E. Ozdemir and M.Z. Sarikaya, New inequalities of Ostrowski's type for sconvex functions in the second sense with applications, arXiv:1005.0702v1 [math.CA], May 5, 2010.
- [9] G. Toader, Some generalizations of the convexity, Proceedings of The Colloquium On Approximation and Optimization, Univ. Cluj-Napoca, Cluj-Napoca, 1984, 329-338.