Effects of Sphingosine-1-phosphate on Vestibular Nuclear Neurons

  • ;
  • ;
  • ;
  • ;
  • 박종성 (전남대학교 의과대학 생리학교실)
  • Lee, Jae-Hyuk (Department of Pathology, Chonnam National University Medical School) ;
  • Jang, Su-Jeong (Department of Physiology, Chonnam National University Medical School) ;
  • Kim, Song-Hee (Department of Physiology, Chonnam National University Medical School) ;
  • Jeong, Han-Seong (Department of Physiology, Chonnam National University Medical School) ;
  • Park, Jong-Seong (Department of Physiology, Chonnam National University Medical School)
  • 투고 : 2009.09.14
  • 심사 : 2010.03.25
  • 발행 : 2010.03.31

초록

This study was designed to investigate the effects of sphingosine-1-phosphate on the neuronal activity of rat medial vestibular nuclear neurons. Sprague-Dawley rats aged 14 to 16 days were decapitated under ether anesthesia. After treatment with pronase and thermolysin, the dissociated medial vestibular nuclear neurons were transferred into a chamber on an inverted microscope. Spontaneous action potentials and potassium currents were recorded by standard patch-clamp techniques under current and voltage-clamp modes respectively. 15 medial vestibular nuclear neurons revealed excitatory responses to 1 and $5\;{\mu}M$ of sphingosine-1-phosphate. The spike frequency and resting membrane potential of these cells were increased by sphingosine-1-phosphate. The amplitude of afterhyperpolarization was decreased by sphingosine-1-phosphate. Whole potassium currents of medial vestibular nuclear neurons were decreased by sphingosine-1-phosphate (n=12). Sphingosine-1-phosphate did not affect the charybdotoxin-treated potassium currents. These experimental results suggest that sphingosine-1-phosphate increases the neuronal activity of the medial vestibular nuclear neurons by altering the resting membrane potential and afterhyperpolarization.

키워드

참고문헌

  1. Aoki M, Miyata H, Mizuta K, Ito Y. Evidence for the involvement of NMDA receptors in vestibular compensation. J Vet Res. 1996. 6: 315-317.
  2. Balaban CD, Beryozkin G. Vestibular nucleus projections to nucleus tractus golitarius and the dorsal motor nucleus of the vagus nerve: potential substrates for vestibulo-autonomic interactions. Exp Br Res. 1994. 96: 200-212 .
  3. Benamer N, Moha Ou Maati H, Demolombe S, Cantereau A, Delwail A, Bois P, Bescond J, Faivre JF. Molecular and functional characterization of a new potassium conductance in mouse ventricular fibroblasts. J Mol Cell Cardiol. 2009. 46: 508-517. https://doi.org/10.1016/j.yjmcc.2008.12.016
  4. Birbes H, El Bawab S, Hannun YA, Obeid LM. Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis, FASEB J. 2001. 15: 2669-2679. https://doi.org/10.1096/fj.01-0539com
  5. Bock I, Szabo N, Gamper N, Adams C, Gulbins E. Ceramide inhibits the potassium channel Kv 1.3 by the formation of membrane platforms. Biochem Biophys Res Commun. 2003. 305: 890-897. https://doi.org/10.1016/S0006-291X(03)00763-0
  6. Buccoliero R, Bodennec J, Futerman AH. The role of sphingolipids in neuronal development: lessons from models of sphingolipid storage diseases. Neurochem Res. 2002. 27: 565-574. https://doi.org/10.1023/A:1020207613196
  7. Buccoliero R, Futerman AH. The roles of ceramide and complex sphingolipids in neuronal cell function. Pharmacol Res. 2003. 47: 409-419. https://doi.org/10.1016/S1043-6618(03)00049-5
  8. Chik CL, Li B, Negishi T, Karpinski E, Ho AK. Ceramide inhibits L-type calcium channel currents in rat pinealocytes. Adv Exp Med Biol. 1999. 460: 51-59.
  9. Cuvillier O. Sphingosine in apoptosis signaling. Biochim Biophys Acta. 2002. 585: 153-162.
  10. Darlington CL, Flohr H, Smith PF. Molecular mechanisms of brainstem plasticity. The vestibular compensation model. Mol-Neurobiol. 1991. 5: 355-368. https://doi.org/10.1007/BF02935558
  11. De Waele C, Serafin M, Muhlethaler M, Vidal PP. Vestibular compensation: an in vivo and in vitro study of second order vestibular neurons. Soc Neurosci Abstr 1988. 14: 331.
  12. De Waele C, Vibert N, Beaudrimont M, Vidal PP. NMDA receptors contribute to the resting discharge of vestibular neurons in the normal and hemilabyrinthectomized guinea pig. Exp Br Res. 1990. 81: 125-133. https://doi.org/10.1007/BF00230108
  13. Goldberg JM, Fernandez C. The vestibular system. In: Brookhart JM, Mountcasie VB (Eds): Handbook of Physiology. Section 1: The nervous system Vol. III. Bethesda, Maryland, 1984. pp980.
  14. Hamil OP, Marty A, Neher E, Sakman B, Sigworth F. Improved patch clamp techniques for high resolution current recording from cells and cell free membrane patches. Pflug Arch. 1981. 391: 85-100. https://doi.org/10.1007/BF00656997
  15. Hannun A, Luberto C. Ceramide in the eukaryotic stress response. Trends Cell BioI. 2000. 10: 73-80. https://doi.org/10.1016/S0962-8924(99)01694-3
  16. Jerram A, Darlongton CL, Smith PF. Methylprednisolone enhances vestibular compensation of spontaneous ocular nystagmus following unilateral labyrinthectomy in guinea pig. Eur J Pharmacol. 1995. 275: 291-293. https://doi.org/10.1016/0014-2999(95)00039-N
  17. Johnston AR, MacLeod NK, Dutia MS. Ion conductances contributing to spike repolarization and afterpotential in rat medial vestibular nucleus neurons. J Physiol. 1994. 481: 61 -77.
  18. Kajimoto T, Okada T, Yu H, Goparaju SK, Jahangeer S, Nakamura S. Involvement of sphingosine-I-phosphate in glutamate secretion in hippocampal neurons. Mol Cell BioI. 2007. 27: 3429-3440. https://doi.org/10.1128/MCB.01465-06
  19. Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol. 2000. 10: 381-391. https://doi.org/10.1016/S0959-4388(00)00092-1
  20. Kay AR, Wong RK. Isolation of neurons suitable for patchclamping from adult mammalian central nervous systems. J Neurosci Methods. 1986. 16: 227-238. https://doi.org/10.1016/0165-0270(86)90040-3
  21. Kim MS, Jin BK, Chun SW, Lee MY, Lee SH, Kim JH, Park BR. Effect of MK801 on cFos-like protein expression in the medial vestibular nucleus at early stage of vestibular compensation in uvulonodullectomized rats. Neurosci Lett. 1997. 231: 147-150. https://doi.org/10.1016/S0304-3940(97)00550-8
  22. Kitahara T, Saika T, Takeda N, Kubo T, Kiyama H. Changes in Fos and jun expression after labyrinthectomy in the rat brainstem. Acta Otolaryngol Suppl. 1995. 520: 401-404.
  23. Landeen LK, Dederko DA, Kondo CS, Hu BS, Aroonsakool N, Haga JH, Giles WR. Mechanisms of the negative inotropic effects of sphingosine-I-phosphate on adult mouse ventricular myocytes. Am J Physiol Heart Circ Physiol. 2008. 294: 736-749. https://doi.org/10.1152/ajpheart.00316.2007
  24. Levade T, Malagarie-Cazenave S, Gouaze V, Segui B, Tardy C, Betito S, Abadie N, Cuvillier O. Ceramide in apoptosis: a revisited role, Neurochem. Res 2002. 27: 601-607. https://doi.org/10.1023/A:1020215815013
  25. Luberto C, Kraveka JM, Hannun YA. Ceramide regulation of apoptosis versus differentiation: a walk on a fine line. Lessons from neurobiology. Neurochem Res. 2002. 27: 609-617. https://doi.org/10.1023/A:1020267831851
  26. Malisan F, Testi R. GD3 ganglioside and apoptosis, Biochim Biophys Acta. 2002. 1585: 179-187. https://doi.org/10.1016/S1388-1981(02)00339-6
  27. Maclennan K, Smith PF, Darlington CL. Ginkgolide B accelerates vestibular compensation of spontaneous ocular nystagmus following unilateral labyrinthectomy in guinea pig. Exp Neurol. 1995. 131: 273-278. https://doi.org/10.1016/0014-4886(95)90049-7
  28. Park JS, Jeong HS. Effects of nitric oxide on the vestibular functional recovery after unilateral labyrinthectomy. Jpn J pharmacol. 2000. 4: 425-430.
  29. Riboni L, Viani P, Bassi R, Prinetti A, Tettamanti G. The role of sphingolipids in the process of signal transduction, Prog Lipid Res. 1997. 36: 153-195. https://doi.org/10.1016/S0163-7827(97)00008-8
  30. Sah P, Faber ES. Channels underlying neuronal calcium-activated potassium currents. Prog Neurobiol. 2002. 66: 345-353. https://doi.org/10.1016/S0301-0082(02)00004-7
  31. Sah P. Ca(2+)-activated $K^{+}$ currents in neurones: types, physiological roles and modulation. Trends Neurosci. 1996. 19: 150-154. https://doi.org/10.1016/S0166-2236(96)80026-9
  32. Sansom AJ, Darlington CL, Smith PF. Intraventricular injection of an NMDA antagonists disrupts vestibular compensation. Neuropharmacol. 1990. 29: 83-84.
  33. Sansom AJ, Darlington CL, Smith PF. Pretreatment with MK- 801 reduces spontaneous nystagmus following unilateral labyrinthectomy. Eur J Pharmacol. 1992. 220: 123-129. https://doi.org/10.1016/0014-2999(92)90739-Q
  34. Zhang YH, Fehrenbacher JC, Vasko MR, Nicol GD. SphingosineI- phosphate via activation of a G-protein-coupled receptor(s) enhances the excitability of rat sensory neurons. J Neurophysiol. 2006. 96: 1042-1052. https://doi.org/10.1152/jn.00120.2006