472 BRAG =EA

w4 AAE F L8
A A Az
(Real-Time Search System using
Distributed Cache)

ol X 7
(Jae-Kee Lee)

,
I

(Jian-Ji Ren)

3 ARAEY Q2] JAG ¥
Ad, FA% A Mul2EL AMATL
F UAEE ALY £ Atk AT 7Y
2 Fold FAE A Zold £ U] wWE =§ F&
3t B =RoAe 1A% AT A A2EE pEs
71 918 AZE F2E HAGAT AAFHD A= 4
A AN 2L sutez A £3 A2 A4 A
299 F Rroz yHordn & =& Hr} Ao
A|Qgk FZ7} Replication Overhead %2 FX8tHAA 4
AIZE AAe gle] B SPAHE AFE & A
i i=a
7I9= © EAA], AR, A A2
Abstract Nowadays, as the indices of the major
search engines grow to a tremendous proportion, vertical
search services can help customers to find what they
need. Real time search is valuable because it lets you
know what’s happening right now on any given topic. In
this paper, we designed a new architecture to implement
a high performance real time search system. Based on
the real time search’s characters, we divided the whole
system to two parts which are collection system and
search system. The evaluation results showed that our
design has the potential to provide the real time search

- B =R 20109 Foldsta grady] Add st ATHAT
<ol EES A363 FATHTHE AN A A E ALY AN A
Al2R] TR Aoz BEYE =S g% A
U CERERRELEEEEELE
Jimeyren@msn.com
o E g Foldttn AFEH YN 2
jklee@dau.ac.kr

=BT - 20009 128 249
Arrgam 0 2010d 19 28¢

Copyright©2010 =3 83748t : 7HQ Sxolut it BAA A4 o] A&
2ol A T g¥o) tig BARR T oAd AlEe A2 &7
ol W, ALE2 YA L2 A 4 gon] A HolAd & &7t X
g eA] FAjsiol Puth, o] flo) Bxoz BA WY, 2% A T EE
f3e) A E st A9l dlsled e Al 51718 da v 8§ 2 Hello}
Tyt

Auapes=gx]: AFH] A4 D A8 A167 A45(2010.4)

Feo A4 2 gE A 16 A A 4 5(0104)

transparent scalability while maintaining the replication
overhead costs in check.

Key words distributed cache, real-time, search
system

1. Introduction

Traditional search approaches are still dominated
by techniques developed a long time ago, for sys-—
tems with hardware requirements very different
from today. Real time search presents a completely
different set of challenges requiring a completely
different approach to tradition. The challenges are
especially difficult because the scope is still enor—
mous, the entire web and the user’s expectations
are for information being indexed as fast as it
appears on the web, with a lag measured in
seconds and (fractions of) minutes.

Modern search and its key component, indexing,
have been very much influenced by historical fac—
tors such as huge difference in latency of mass
storage media (hard disks) and traditional archi-
tectures., Those differences drove many decisions in
distributed architectures, especially in the area of
the cache based distributed architectures.

Traditional case shows that one could index a
very large corpus of data with a significant lag
and expense of index «creation (e.g. traditional
search engines), or index a small corpus of data
really fast (e.g. online news), but not both. Real
time search is a new case which takes the both
characters for discovering what people are talking
about on the internet right now.

Real time search is valuable because it lets you
know what's happening right now on any given
topic. Companies can use it to handle customer
service. News junkies can use it to follow political
events. The issue for real time search is figuring
out the right balance between immediacy, popularity
and relevance.

The rest of this paper is organized as follows.
Section 2 talks about backgrounds, some of which
has been very influential on our design. In Section
3, we present a novel architecture to implement
real time search. We evaluate our system in Sec-

tion 4. Section 5 concludes the paper.

2 ANE AT AN A A2 473

2. Backgrounds

2.1 Microblog

Recently, microblog became a hot topic in WWW
field. The content of a microblog differs from a
traditional blog in that it is typically smaller in
actual size and aggregate file size. A single entry
could consist of a single sentence or fragment or
an image or a brief, ten second video. But, still, its
purpose is similar to that of a traditional blog.
User’'s microblog is about particular topics that can
range from the simple, such as “"what one is doing
at a given moment,” to the thematic, such as
“sports cars,” to business topics, such as particular
products. Many microblogs[1,2] provide short com-
mentary on a person-to-person level, share news
about a company’s products and services, or pro-
vide logs of the events of one's life.

2.2 Key-Value Storage System

There are some problems with traditional data-
base, which old and very complex system, many
wasted features, many steps to process the SQL
query, need administration, bad performance and
not scalable. In the Web Search field, Indexing is
the most important part as to search engine. Col-
lections are often so large that they cannot perform
index construction efficiently on a single machine.
This is particularly true of the WWW for which
need large and scalable computer clusters to
construct and reasonably sized web index. From
long time ago many researches teams and com-
panies discovered that the database is the main
bottleneck. Building large systems on top of a
traditional RDBMS data storage layer is no longer
good enough. So there is another issue which was
named the next generation of storage systems.

Key-Value storage system[3] is a simple data-
model, just key-value pairs. Data is stored and
retrieved mainly by primary key, without complex
joins, Every value assigned to key. There is no
complex stuff, such as: relations, ACID, or SQL
quires.

2.3 Memory Based Architecture

What makes memory based architecture different
from traditional architectures is that memory could
be the system of record. Typically disk based archi-
tecture have been the system of record. Disk being

slow we've ended up wrapping disks in compli-
cated caching and distributed file systems to make
them perform. Memory is used as all over the
place as cache, but we're always supposed to
pretend that cache can be invalidated at any time,
the database, will step in and provide the correct
values. Caching also serves a different purpose.
The purpose behind cache based architectures is to
minimize the data bottleneck through to disk.
Memory based architectures can address the entire
end-to-end application stack. Data in memory can
be of higher reliability and availability than tradi-
tional architectures.

2.4 Real Time Search

Real time search means looking through material
that literally is published in real time. In other
words, material where there’'s practically no delay
between composition and publishing. You take a
picture and seconds later, it's posted to the world
to see. You think of something, immediately tap it
out on Twitter, and your tweet is shared almost as
soon as you thought of it.

The entire real time start-ups search Twitter[4],
and some have added in social bookmarking sites
like Digg[5] and Delicious[6]. Because Twitter alre-
ady has an in-house search engine through its
acquisition of Surmise last year, the newer start-
ups have to differentiate their products by filtering
content based on relevancy and popularity. At this
time, Twitter search only produces results by how
recently they were published.

3. Distributed Cache Implement Real Time
Search System

There are various ways to implement a search
engine. The typical way uses a crawler technique.
The crawler continuously scans the information,
collects changes and indexes them. The indexing
service is a centerpiece in the architecture and
enables quick matching of keywords into search
results. In real time search this technique is not
applicable. The key is how fast we can put new
data into the indexing server. Well, most search
servers are highly optimized for fast read, however
they tend to be quite heavy on write operations.

How to design a real time search? There are some

474 ARAEFHE=EA AFE HA 2 #HE A 16 A A 4 (20104

requirements include some issues:

+ Asynchronous event-driven design: Avoid as much
as possible any synchronous interaction with the
data. Instead, use an event-driven approach and
workflow

« Partitioning pattern: Design the data model to fit
the partitioning model

= Parallel execution: Use parallel execution to get the
most out of available resources. A good place to
use parallel execution is the processing of users
requests. Multiple instances of each service can
take the requests from the messaging system and
execute them in parallel. Another good place for
parallel processing is using MapReduce(7] for
performing aggregated requests on partitioned data.

» Replication (read-mostly): In read-mostly scenarios,
database replication can help load-balance the read
load by splitting the read requests among the
replicated database nodes.

This is where it makes sense to put the col-
lection and indexing server in-memory. Having an
in-memory server enables both fast writes and fast
searches. However, memory is limited in capacity
and is not considered reliable. This is where dis-
tributed system comes to the rescue. A distributed
cache system addresses the capacity and reliability
of memory. Capacity is addressed by breaking the
data into multiple partitions; reliability is achieved
by having at least one copy of each partition avail-
able in another memory instance.

As above mentioned, what are real time search
scalability challenges?

Collection (Write) -- The challenge is how to
handle an ever-growing volume of publishing mes-
saging that can lead to a viral message storm.

Search (Read) - The challenge is how to handle
a large number of concurrent users that continually
listen for information from users they care.

In our distributed cache system, it consists of
two parts: collection system and search system.
Each system has two primary layers: aggregation
layer and storing layer. Aggregation layer manages
the instances, replication and distribution. Storing
layer consists of one or many memory—based parti-
tion key, such as a Customer ID in a CRM app-

lication or a Trade ID in a trading application. In

the indexing, the pattern we'll use to perform such
this task is MapReduce.

3.1 Database Architecture

The transition involved a continuous redesign and
re-implementation of their initial system until it
finally resembled the prototypical distributed archi-
tecture depicted in Fig. 1 (left side). The typical
distributed architecture consists of a number of
layers: Application logic (Ruby on Rails[8], Scala[9]),
(Memcache[10], SQL query caching[11])
and database backend (RDBMS clusters, CouchDB
[12], Google's BigTable or Amazon’'s Dynamo[13])
that interact through asynchronous message passing.

caching

In our distributed architecture, each layer consists
of a number of machines devoted to perform their
respective tasks and scaling up can be addressed
by increasing the number of servers in each layer.

Typical Architecture Qur System Architecture

1
(Separate cloud) : {One Cloud)
: |
s nl AAA . HA
|
Application Caching ! . A . A
Logic Backes Partilen 2

Partition |

mA ruion»
®)

Database
Backend

Fig. 1 Typical Architecture v.s One Cloud Architecture

3.2 Collection System Processing

Fig. 2 shows the collection system architecture. It
consists of 2 parts; feed collection, information pro-
cessing and storage database. Information process-
ing and storage database both process in every
machine which consists to one cloud.

We select feed-id as the partitioning key, content
will be sent to a specific partition. Multiple content
s may be routed to the same partition. Usually the
algorithm to determine which partition fits a certain
feed-id is something like:

routing-key.hash () % #of partitions

The data

replicated asynchronously into the other partitions

from the memory partitions gets

to avoid failure.
3.3 Search System Processing
When client sends a search request to system,

O ANE HET AN Y ARH 475

_— TNV A
o Ciletin = {0 BA HA
Q0 OOOM =10)
00 . O Pritnl Patton3
aaA BA
0 8}
nA Butition2 Faritiond
- aA
@)

Fig. 2 Collection System Architecture

Partition 1 Partition 2 Partition n

Aggregated
result |

Clieat

i

g Reduce
Partitton 0 5, ...

Fig. 3 Search System Architecture

aggregation layer assigns the MapReduce jobs to
be executed over partitions. Because .the data is
stored in-memory, executing such a task is extre-
mely fast compared with the equivalent with data-
base and stored procedure operations. Execution is
aggregated to the aggregation layer implicitly. The
aggregation layer can assign Reduce jobs to aggre-
gate the results which will be accepted by client.
Fig. 3 below illustrates the processing.

4. Evaluation

For the purposes of this paper, we want to
understand the trade-offs involved in using our
architecture. In order to do so, we deployed our
system on 15 nodes and used the Amazon EC2
trace to drive our simulation.

According to a “Social networks that matter:
Twitter under the microscope [14]", their data set
consisted of a total of 309,740 users, who on
average posted 255 posts. Among the 309,740 users

only 211,024 posted at least twice. They call them
the active users. They also define the active time
of an active user by the time that has elapsed
between his first and last post. On average, active
users were active for 206 days. We can calculate
that on average a tweet is sent every 0.23 seconds.
And the average the write rate of 4.4 writes/s.
Unfortunately, the data set does not include infor-
mation regarding search click. We choose a conser-
vative rate of 4.4 reads/s same with write.

In order to understand the trade-offs involved in
using our real-time search system, we primarily
focus on read and write operations, and how these
operations are affected by the number of the
servers.

4.1 Replication Scheme

The traditional requirements of a single server to
effectively deal with the load described earlier would
be high both in specifications and cost (mainframe).
But with more servers, the total cost will be lower
since we could use more commodity servers or
virtual machines in the Cloud. The character of
distributed system is that the servers will be fault on
anytime. Let us discuss the implication of the
one-hop replication scheme to avoid that.

In order to gauge the overhead due to replication
we define the replication ratio for feeds ¥, which is
the ratio between the replicated feeds and the
native feeds on a given server.

Write operation: Each server need to deal with the
writes of both the native feeds and their replicates.
Since writes are not homogeneously distributed, each
server needs to be provisioned for (yw+1)W/S write
operations, S being the number of servers.

Read operation: After partitioning and replication,
the readable feeds are local; hence the load due to
the read operations is spread across the servers as
N/S. The one-hop replication scheme ensures that
all reads can be carried out locally, saving the
network traffic.

The replication overhead results are depicted in
Fig. 4. There are many differences between the
read-only and read-write. We compare each other
and plot the replication overhead ratio vs. the
number of servers. Results are the average across

the servers.

476 QAR 383 =5
2
urite only ——
ol Write & Read —x— |
] e
» X“"//—’// /
1.2 7
7 /"
1 Y,
E 8.8 | ‘/’ "/
6.8 //]
£ /
gLl
2.2
-84
8.6 |
-8.8

-1 "
8 4] 12 16 2
nunber of servers

Fig. 4 Replication Overhead Results

5. Conclusions

A real time search introduces unique challenges
that are quite different from a traditional database-
centric search. The most profound difference is the
fact that unlike with traditional sites, real time
search is a heavy read/write application, and not
only read-mostly. In this paper, we describe a new
architecture to design the real time search system.
Based the real time search’s characters, we divided
the whole system to two parts which are collection
system and read system. The evaluation results
showed that our design has the potential to provide
the real time search transparent scalability while
maintaining the replication overhead costs in check.
We believe that, there is much scope for further
research in this area and using memory-based
architecture to implement cloud computing will be a

very hot issue.

References

[1]
[21
(3]

http://jaiku.com/.

http://friendfeed.com/.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wil-
son C. Hsieh, Deborah A. Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes, and Robert E.
Gruber, ”Bigtable: A distributed storage system
for structured data,” In Proceedings of OSDI06:
the 7th USENIX Symposium on Operating Sys-
tems Design and Implementation, vol.7, pp.205-
218, Nov. 2006.

[4]
[5]
(6]

http://search.twitter.com/.
http://digg.com/.
http://delicious.com/.

[7]

[81
[91]
(10
[11]
[12]
[13]

[141

FEo 44 2 HH A 16 E A 4 2(0104)

Jeffrey Dean and Sanjay Ghemawat, “MapReduce:
Simplified Data Processing on Large Clusters,”
Communications of the ACM, vol5], no.l, pp.107-
113, Jan. 2008.

http://rubyonrails.org/.

http://www.scala-lang.org/.
http://www.danga.com/memcached/.
http://devzone.zend.com/article/1258/.
http://couchdb.apache.org/.

Giuseppe DeCandia, Deniz Hastorun, Madan Jam-
pani, Gunavardhan Kakulapati, Avinash Lakshman,
Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall and Werner Vogels, "Dynamo: Amazon's
Highly Available Key-value Store,” In Proceedings
of SOSP'07, pp.205-220, Oct. 2007.

Bemardo A. Huberman, Daniel M. Romero, and
Fang Wu, "Social networks that matter: Twitter
under the microscope,” Peer Reviewed journal on
the Internet, vol.14, no.1-5, Jan 2009.

