DOI QR코드

DOI QR Code

Conversion of Cellulose into Polyols over Noble Metal Catalysts Supported on Activated Carbon

활성탄에 담지된 귀금속 촉매를 이용한 셀룰로우스의 폴리올로의 전환

  • You, Su-Jin (Division of Energy Systems Research and Division of Chemical Engineering and Materials Engineering, Ajou University) ;
  • Kim, Saet-Byul (Division of Energy Systems Research and Division of Chemical Engineering and Materials Engineering, Ajou University) ;
  • Kim, Yong-Tae (Division of Energy Systems Research and Division of Chemical Engineering and Materials Engineering, Ajou University) ;
  • Park, Eun-Duck (Division of Energy Systems Research and Division of Chemical Engineering and Materials Engineering, Ajou University)
  • 유수진 (아주대학교 에너지시스템학부, 화공.신소재공학부) ;
  • 김샛별 (아주대학교 에너지시스템학부, 화공.신소재공학부) ;
  • 김용태 (아주대학교 에너지시스템학부, 화공.신소재공학부) ;
  • 박은덕 (아주대학교 에너지시스템학부, 화공.신소재공학부)
  • Received : 2010.02.22
  • Accepted : 2010.03.22
  • Published : 2010.03.31

Abstract

In this work, the conversion of crystalline cellulose into polyols in the presence of hydrogen was examined over noble metal (Pt, Ru, Ir, Rh, and Pd) catalysts supported on activated carbon. For comparison, Pt/${\gamma}-Al_2O_3$ and Pt/H-mordenite were also investigated. Several techniques: $N_2$ physisorption, X-ray diffraction(XRD), inductively-coupled plasma-atomic emission spectroscopy (ICP-AES), temperature-programmed reduction with $H_2$ ($H_2$-TPR) and CO chemisorption were employed to characterize the catalysts. The cellulose conversion was not strongly dependent on the types of the catalyst used. Pt/AC showed the highest yields to polyols among activated carbon-supported noble metal catalysts, viz. Pt/AC, Ru/AC, Ir/AC, Rh/AC and Pd/AC.

결정성의 셀룰로우스를 수소분위기하에서 다양한 귀금속 촉매를 이용하여 폴리올로 전환시키는 연구를 수행하였다. 촉매는 단일 귀금속(Pt, Ru, Ir, Rh, Pd)을 활성탄에 습식함침법으로 담지시켜서 제조하였으며, Pt/$\gamma-Al_2O_3$와 Pt/H-mordenite를 비교촉매로 사용하였다. 생성물은 고압액체크로마토그래피로 분석하였다. 촉매는 질소흡착, X-선 회절법, 유도결합플라즈마분광법(ICP-AES), 수소-승원환원분석($H_2$-TPR), 그리고 일산화탄소 화학흡착을 통하여 분석하였다. 셀룰로우스의 전환율은 사용한 촉매와 연관관계가 낮은 것으로 나타났으며 활성탄에 담지된 귀금속 촉매중에서 Pt/AC가 높은 폴리올의 수득률에 바람직한 것으로 조사되었다.

Keywords

References

  1. Rinaldi, R., and Schuth, F., "Design of Solid Catalysts for the Conversion of Biomass," Energ. Environ. Sci., 2(9), 610-626 (2009). https://doi.org/10.1039/b902668a
  2. Huber, G. W., Iborra, S., and Corma, A., "Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering," Chem. Rev., 106(9), 4044-4098 (2006). https://doi.org/10.1021/cr068360d
  3. Dhepe, P. L., and Fukuoka, A., "Cellulose Conversion under Heterogeneous Catalysis," Chem. Sus. Chem., 1(12), 969-975 (2008). https://doi.org/10.1002/cssc.200800129
  4. Klemm, D., Heublein, B., Fink, H. P., and Bohn, A., "Cellulose: Fascinating Biopolymer and Sustainable Raw material," Angew. Chem. Int. Ed., 44(22), 3358-3393 (2005). https://doi.org/10.1002/anie.200460587
  5. Dhepe, P. L., and Fukuoka, A., "Cracking of Cellulose over Supported Metal Catalysts," Catal. Surv. Asia., 11(4), 186-191 (2007). https://doi.org/10.1007/s10563-007-9033-1
  6. Fukuoka, A., and Dhepe, P. L., "Sustainable Green Catalysis by Supported Metal Nanoparticles," Chem. Rec., 9(4), 224-235 (2009). https://doi.org/10.1002/tcr.200900004
  7. Mamleev, V., Bourbigot, S., Bras, M. L., and Yvon, J., "The Facts and Hypotheses relating to the Phenomenological Model of Cellulose Pyrolysis Interdependence of the Steps," J. Anal. Appl. Pyrol., 84(1), 1-17 (2009). https://doi.org/10.1016/j.jaap.2008.10.014
  8. Kamm, B., "Production of Platform Chemicals and Synthesis Gas from Biomass," Angew. Chem. Int. Ed., 46(27), 5056-5058 (2007). https://doi.org/10.1002/anie.200604514
  9. Onda, A., Ochi, T., and Yanagisawa, K., "Selective Hydrolysis of Cellulose into Glucose over Solid Acid Catalysts," Green. Chem., 10(10), 1033-1037 (2008). https://doi.org/10.1039/b808471h
  10. Cortright, R.D., Davda, R. R., and Dumesic, J. A., "Hydrogen from Catalytic Reforming of Biomass-Derived Hydrocarbons in Liquid Water," Nature, 418(6901), 964-967 (2002). https://doi.org/10.1038/nature01009
  11. Huber, G. W., Shabaker, J. W., and Dumesic, J. A., "Raney Ni-Sn Catalyst for $H_2$ Production from Biomass-Derived Hydrocarbons," Science, 300(5628), 2075-2077 (2003). https://doi.org/10.1126/science.1085597
  12. Simonetti, D. A., Rass-Hansen, J., Kunkes, E. L., Soares, R. R., and Dumesic, J. A., "Coupling of Glycerol Processing with Fischer-Tropsch Synthesis for Production of Liquid Fuels," Green Chem., 9(10), 1073-1083 (2007). https://doi.org/10.1039/b704476c
  13. Huber, G. W., Chheda, J. N., Barrett, C. J., and Dumesic, J. A., "Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates," Science, 308(5727), 1446-1450 (2005). https://doi.org/10.1126/science.1111166
  14. Fukuoka, A., and Dhepe, P. L., "Catalytic Conversion of Cellulose into Sugar Alcohols," Angew. Chem. Int. Ed., 45(31), 5161-5163 (2006). https://doi.org/10.1002/anie.200601921
  15. Luo, C., Wang, S., and Liu, H., "Cellulose Conversion into Polyols Catalyzed by Reversibly Formed Acids and Supported Ruthenium Clusters in Hot Water," Angew. Chem. Int. Ed, 46(40), 7636-7639 (2007). https://doi.org/10.1002/anie.200702661
  16. Ji, N., Zhang, T., Zheng, M., Wang, A., Wang, H., Wang, X., and Chen, J. G., "Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts," Angew. Chem. Int., 47(44), 8510-8513 (2008). https://doi.org/10.1002/anie.200803233
  17. Ji, N., Zhang, T., Zheng, M., Wang, A., Wang, H., Wang, X., Shu, Y., Stottlemyer, A. L., and Chen, J. G., "Catalytic Conversion of Cellulose into Ethylene Glycol over Supported Carbide Catalysts," Catalysis Today, 147(2), 77-85 (2009). https://doi.org/10.1016/j.cattod.2009.03.012
  18. Zheng, M. Y., Wang, A. Q., Ji, N., Pang, J. F., Wang, X. D., and Zhang, T., "Transition Metal-Tunsten Bimetallic Catalysts for the Conversion of Cellulose into Ethylene Glycol," Chem. Sus. Chem., 3(1), 63-66 (2010). https://doi.org/10.1002/cssc.200900197
  19. Zhang, Y., Wang, A., and Zhang, T., "A New 3D Mesoporous Carbon Replicated from Commercial Silica as a Catalyst Support for Direct Conversion of Cellulose into Ethylene Glycol," Chem. Commun., 46(6), 862-864 (2010). https://doi.org/10.1039/b919182h
  20. Deng, W., Tan, X., Fang, W., Zhang, Q., and Wang, Y., "Conversion of Cellulose into Sorbitol over Carbon Nanotube- Supported Ruthenium Catalyst," Catal. Lett., 133(1-2), 167-174 (2009). https://doi.org/10.1007/s10562-009-0136-3
  21. Zhu, Y., Kong, Z. N., Stubbs, L. P., Lin, H., Shen, S., Anslyn, E. V., and Maguire, J. A., "Conversion of Cellulose to Hexitols Catalyzed by Ionic Liquid-Stabilized Ruthenium NanoparticIes and a Reversible Binding Agent," Chem. Sus. Chem., 3(1), 67-70 (2010). https://doi.org/10.1002/cssc.200900235
  22. Sasaki , M., Fang, Z., Fukushima, Y., Adschiri, T., and Arai, K., "Dissolution and Hydrolysis of Cellulose in Subcritical and Supercritical Water," Ind Eng. Chem. Res., 39(8), 2883-2890 (2000). https://doi.org/10.1021/ie990690j
  23. Sasaki, M., Adschiri, T., and Arai, K., "Kinetics of Cellulose Conversion at 25MPa in Sub- and Supercritical Water," Aiche. J., 50(1), 192-202 (2004). https://doi.org/10.1002/aic.10018
  24. NoIen, S. A., Liotta, C.L., Eckert, C. A., and GIaser, R., "The Catalytic Opportunities of Near-critical Water: A Benign Medium for Conventionally Acid and Base Catalyzed Condensations for Organic Synthesis," Green. Chem., 5(5), 663-669, (2003). https://doi.org/10.1039/b308499j
  25. Auer, E., Freund, A., Pietsch, J., and Tacke, T., "Carbons as Supports for Industrial Precious Metal Catalysts," Appl. Catal. A: Gen., 173(2), 259-271 (1998). https://doi.org/10.1016/S0926-860X(98)00184-7