References
- Rinaldi, R., and Schuth, F., "Design of Solid Catalysts for the Conversion of Biomass," Energ. Environ. Sci., 2(9), 610-626 (2009). https://doi.org/10.1039/b902668a
- Huber, G. W., Iborra, S., and Corma, A., "Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering," Chem. Rev., 106(9), 4044-4098 (2006). https://doi.org/10.1021/cr068360d
- Dhepe, P. L., and Fukuoka, A., "Cellulose Conversion under Heterogeneous Catalysis," Chem. Sus. Chem., 1(12), 969-975 (2008). https://doi.org/10.1002/cssc.200800129
- Klemm, D., Heublein, B., Fink, H. P., and Bohn, A., "Cellulose: Fascinating Biopolymer and Sustainable Raw material," Angew. Chem. Int. Ed., 44(22), 3358-3393 (2005). https://doi.org/10.1002/anie.200460587
- Dhepe, P. L., and Fukuoka, A., "Cracking of Cellulose over Supported Metal Catalysts," Catal. Surv. Asia., 11(4), 186-191 (2007). https://doi.org/10.1007/s10563-007-9033-1
- Fukuoka, A., and Dhepe, P. L., "Sustainable Green Catalysis by Supported Metal Nanoparticles," Chem. Rec., 9(4), 224-235 (2009). https://doi.org/10.1002/tcr.200900004
- Mamleev, V., Bourbigot, S., Bras, M. L., and Yvon, J., "The Facts and Hypotheses relating to the Phenomenological Model of Cellulose Pyrolysis Interdependence of the Steps," J. Anal. Appl. Pyrol., 84(1), 1-17 (2009). https://doi.org/10.1016/j.jaap.2008.10.014
- Kamm, B., "Production of Platform Chemicals and Synthesis Gas from Biomass," Angew. Chem. Int. Ed., 46(27), 5056-5058 (2007). https://doi.org/10.1002/anie.200604514
- Onda, A., Ochi, T., and Yanagisawa, K., "Selective Hydrolysis of Cellulose into Glucose over Solid Acid Catalysts," Green. Chem., 10(10), 1033-1037 (2008). https://doi.org/10.1039/b808471h
- Cortright, R.D., Davda, R. R., and Dumesic, J. A., "Hydrogen from Catalytic Reforming of Biomass-Derived Hydrocarbons in Liquid Water," Nature, 418(6901), 964-967 (2002). https://doi.org/10.1038/nature01009
-
Huber, G. W., Shabaker, J. W., and Dumesic, J. A., "Raney Ni-Sn Catalyst for
$H_2$ Production from Biomass-Derived Hydrocarbons," Science, 300(5628), 2075-2077 (2003). https://doi.org/10.1126/science.1085597 - Simonetti, D. A., Rass-Hansen, J., Kunkes, E. L., Soares, R. R., and Dumesic, J. A., "Coupling of Glycerol Processing with Fischer-Tropsch Synthesis for Production of Liquid Fuels," Green Chem., 9(10), 1073-1083 (2007). https://doi.org/10.1039/b704476c
- Huber, G. W., Chheda, J. N., Barrett, C. J., and Dumesic, J. A., "Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates," Science, 308(5727), 1446-1450 (2005). https://doi.org/10.1126/science.1111166
- Fukuoka, A., and Dhepe, P. L., "Catalytic Conversion of Cellulose into Sugar Alcohols," Angew. Chem. Int. Ed., 45(31), 5161-5163 (2006). https://doi.org/10.1002/anie.200601921
- Luo, C., Wang, S., and Liu, H., "Cellulose Conversion into Polyols Catalyzed by Reversibly Formed Acids and Supported Ruthenium Clusters in Hot Water," Angew. Chem. Int. Ed, 46(40), 7636-7639 (2007). https://doi.org/10.1002/anie.200702661
- Ji, N., Zhang, T., Zheng, M., Wang, A., Wang, H., Wang, X., and Chen, J. G., "Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts," Angew. Chem. Int., 47(44), 8510-8513 (2008). https://doi.org/10.1002/anie.200803233
- Ji, N., Zhang, T., Zheng, M., Wang, A., Wang, H., Wang, X., Shu, Y., Stottlemyer, A. L., and Chen, J. G., "Catalytic Conversion of Cellulose into Ethylene Glycol over Supported Carbide Catalysts," Catalysis Today, 147(2), 77-85 (2009). https://doi.org/10.1016/j.cattod.2009.03.012
- Zheng, M. Y., Wang, A. Q., Ji, N., Pang, J. F., Wang, X. D., and Zhang, T., "Transition Metal-Tunsten Bimetallic Catalysts for the Conversion of Cellulose into Ethylene Glycol," Chem. Sus. Chem., 3(1), 63-66 (2010). https://doi.org/10.1002/cssc.200900197
- Zhang, Y., Wang, A., and Zhang, T., "A New 3D Mesoporous Carbon Replicated from Commercial Silica as a Catalyst Support for Direct Conversion of Cellulose into Ethylene Glycol," Chem. Commun., 46(6), 862-864 (2010). https://doi.org/10.1039/b919182h
- Deng, W., Tan, X., Fang, W., Zhang, Q., and Wang, Y., "Conversion of Cellulose into Sorbitol over Carbon Nanotube- Supported Ruthenium Catalyst," Catal. Lett., 133(1-2), 167-174 (2009). https://doi.org/10.1007/s10562-009-0136-3
- Zhu, Y., Kong, Z. N., Stubbs, L. P., Lin, H., Shen, S., Anslyn, E. V., and Maguire, J. A., "Conversion of Cellulose to Hexitols Catalyzed by Ionic Liquid-Stabilized Ruthenium NanoparticIes and a Reversible Binding Agent," Chem. Sus. Chem., 3(1), 67-70 (2010). https://doi.org/10.1002/cssc.200900235
- Sasaki , M., Fang, Z., Fukushima, Y., Adschiri, T., and Arai, K., "Dissolution and Hydrolysis of Cellulose in Subcritical and Supercritical Water," Ind Eng. Chem. Res., 39(8), 2883-2890 (2000). https://doi.org/10.1021/ie990690j
- Sasaki, M., Adschiri, T., and Arai, K., "Kinetics of Cellulose Conversion at 25MPa in Sub- and Supercritical Water," Aiche. J., 50(1), 192-202 (2004). https://doi.org/10.1002/aic.10018
- NoIen, S. A., Liotta, C.L., Eckert, C. A., and GIaser, R., "The Catalytic Opportunities of Near-critical Water: A Benign Medium for Conventionally Acid and Base Catalyzed Condensations for Organic Synthesis," Green. Chem., 5(5), 663-669, (2003). https://doi.org/10.1039/b308499j
- Auer, E., Freund, A., Pietsch, J., and Tacke, T., "Carbons as Supports for Industrial Precious Metal Catalysts," Appl. Catal. A: Gen., 173(2), 259-271 (1998). https://doi.org/10.1016/S0926-860X(98)00184-7