DOI QR코드

DOI QR Code

Fabrication of anodic aluminum oxide nanotemplate using sputtered aluminum thin film

스퍼터 증착된 알루미늄 박막을 이용한 양극산화 알루미늄 나노템플레이트 제조

  • Received : 2010.02.11
  • Accepted : 2010.02.16
  • Published : 2010.04.30

Abstract

Anodic aluminum oxide (AAO) nanotemplates for nano electronic device applications have been attracting increasing interest because of ease of fabrication, low cost process, and possible fabrication in large area. The size and density of the nanostructured materials can be controlled by changing the pore diameter and the pole density of AAO nanotemplate. In this paper, nano porous alumina films AAO nanotemplate was fabricated by second anodization method using sputterd Al films. In addition, effects of electrolyte temperature and anodization voltate on the microstructure of porous alumina films were investigated. As the electrolyte temperature was increased from $8^{\circ}C$ to $20^{\circ}C$, the growth rate of nanoporous alumina films was increased from 86.2 nm/min to 179.5 nm/min. The AAO nanotemplate fabricated with optimal condition had the mean pore diameter of 70 nm and the pore depth of $1\;{\mu}m$.

양극산화 알루미늄(anodic aluminum oxide, AAO) 나노템플레이트는 제작이 쉬우며, 저비용, 대면적 제작이 가능하다는 장점으로 인해 이를 나노 전자소자 제작에 응용하려는 많은 연구가 이루어지고 있다. 이러한 나노템플레이트를 이용하면 기공의 직경이나 밀도를 변화킴으로써 나노구조의 물질의 크기나 밀도를 제어할 수 있다. 따라서 본 논문에서는 나노 전자소자 제작에 응용할 수 있는 AAO 나노템플레이트를 2단계 양극산화법에 의해 제조하였다. 이를 위해 기존의 알루미늄 판 대신 실리콘 웨이퍼 상에 DC 마그네트론 스퍼터법으로 $2{\mu}m$ 두께의 알루미늄 박막을 증착하였고, 전해액으로 사용한 옥살산 용액의 온도 및 양극산화 전압에 따른 다공성 알루미나 막의 미세구조를 조사하였다. 전해액 온도가 $8^{\circ}C$에서 $20^{\circ}C$로 높아짐에 따라 다공성 알루미나 막의 성장속도는 86.2 nm/min에서 179.5 nm/min으로 증가하였다. 최적 조건에서 제작된 AAO 나노 템플레이트의 기공 직경 및 깊이는 각각 70 nm와 $1\;{\mu}m$이었다.

Keywords

References

  1. F. Keller, M. S. Hunter, D. L. Robinson, "Structural feature of oxide coating on aluminum", J. Electrochem. Sci., vol. 100, pp. 411, 1953. https://doi.org/10.1149/1.2781142
  2. Masuda, H. and Fukuda, K., "Ordered Metal Nanohole Arrays Made by a Two-step Replication of Honeycomb Structures of Anidic Alumina,", Science, vol. 268, pp.1466-1468, 1995. https://doi.org/10.1126/science.268.5216.1466
  3. M. Jung, J.-W. Choi, Y.-K. Kim, B.-K. Oh, "Fabrication of Nanoporous Alumina Mask and its Applications", Korean Chem. Eng. Res., vol. 46, no. 3, pp.465-472, 2008.
  4. S.-H. Jeong, S.-H. Jung, K.-H. Lee, "Preparation of Anode Alumina Nanotemplate and its Applications", J. Korean Ind. Eng. Chem., ol 16, No. 4, pp.461-473, 2005.
  5. M. Z. An., L. C. Zhao, Z. M. Tu "Graining technology by electrolytic etching on the surface of aluminum alloys", Mater. Chem. Phys., vol. 77, pp.170, 2002.
  6. Nakao, M., Oku, S., Tamamura, T., Yasui, K. and Masuda, H., "GaAs and InP Nanohole Arrays Fabricated by Reactive Beam Etching Using Highly Ordered Alumina Membranes," Jpn. J. Appl. Phys., vol. 38, pp.1052-1055, 1999. https://doi.org/10.1143/JJAP.38.1052
  7. Guo, Q., Tanaka, T., Nishio, M., Ogawa, H., Mei, X. and Ruda, H., "Fabrication of ZnTe Nanohole Arrays by Reactive ion Etching Using Anodic Alumina Templates," Jpn. J. Appl. Phys., vol., 41, pp.L118-L120, 2002. https://doi.org/10.1143/JJAP.41.L118
  8. Jung, M., Lee, S., Jhon, Y. M., Mho, S.-I., Cho, J., Woo, D., "Nanohole Arrays with Sub-30 nm Diameter Formed on GaAs Using Nanoporous Alumina Mask," Jpn. J. Appl. Phys., vol. 46, pp.4410-4412, 2007. https://doi.org/10.1143/JJAP.46.4410
  9. K. Nielsch, F. Muller, A. P. Li, U. Gosele, "Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina", Adv. Mater., vol. 12, pp.582, 2000. https://doi.org/10.1002/(SICI)1521-4095(200004)12:8<582::AID-ADMA582>3.0.CO;2-3
  10. F. Li, L. Zhang, R.M. Mertzer, "On the growth of highly ordered pores in anodized aluminum oxide" Chem. Maer., vol, 10, pp. 2470, 1998. https://doi.org/10.1021/cm980163a
  11. Tatsuya Iwaasaki, Taiko Motoi, Tohru Den, "Strengthened porous alumina membarne tube prepared by means of internal anodic oxidation" Appl. Phys. Lett., vol. 75, pp. 2044, 1999. https://doi.org/10.1063/1.124910
  12. D. Crouse, Y. H. La, A. E. Miller, M. Crouse, "Self-ordered pore structure of anodized aluminum on silicon and pattern transfer", Appl. Phys. Lett., vol. 76, pp.49, 2000. https://doi.org/10.1063/1.125652

Cited by

  1. 스퍼터링법에 의해 증착된 알루미늄 박막의 전기적·구조적 특성에 관한 연구 vol.33, pp.2, 2020, https://doi.org/10.4313/jkem.2020.33.2.114