DOI QR코드

DOI QR Code

Cloning of porcine chemerin, ChemR23 and GPR1 and their involvement in regulation of lipogenesis

  • Huang, Jianfeng (Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Zhang, Jian (Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Lei, Ting (Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Chen, Xiaodong (Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Zhang, Yan (Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Zhou, Lulu (Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Yu, An (Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Chen, Zhilong (Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Zhou, Ronghua (Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Yang, Zaiqing (Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University)
  • Received : 2010.03.22
  • Accepted : 2010.06.14
  • Published : 2010.07.31

Abstract

Chemerin is a novel adipokine which is abundant in adipose tissue to promote adipocyte differentiation and with significant relativity to BMI and insulin sensitivity. We report here the molecular characterization of porcine chemerin and its receptors ChemR23 and GPR1, as well as their transcriptional regulation during lipogenesis. Chemerin was mainly expressed in liver, intestine, kidney and adipose tissue, consistent with the expression pattern of GPR1, but not ChemR23, which was predominantly present in spleen and temperately in adipose tissue. We further investigated the lipogenesis-related transcriptional activation of $PPAR{\gamma}$ and KLF15 on chemerin and its receptors. The data showed that KLF15, but not $PPAR{\gamma}$, can up-regulate the mRNA level of chemerin, ChemR23 and GPR1, which was consistent with the results of luciferase assay that confirmed the effect of KLF15 on ChemR23 promoter. Taken together, our data provide basic molecular information for the further investigation on the function of chemerin in lipogenesis.

Keywords

References

  1. Hotamisligil, G. S. (2006) Inflammation and metabolic disorders. Nature 444, 860-867. https://doi.org/10.1038/nature05485
  2. Trujillo, M. E. and Scherer, P. E. (2006) Adipose tissue-derived factors: impact on health and disease. Endocr. Rev. 27, 762-778. https://doi.org/10.1210/er.2006-0033
  3. Nagpal, S., Patel, S., Jacobe, H., DiSepio, D., Ghosn, C., Malhotra, M., Teng, M., Duvic, M. and Chandraratna, R. A. (1997) Tazarotene-induced gene 2 (TIG2), a novel retinoid- responsive gene in skin. J. Invest. Dermatol. 109, 91-95. https://doi.org/10.1111/1523-1747.ep12276660
  4. Parolini, S., Santoro, A., Marcenaro, E., Luini, W., Massardi, L., Facchetti, F., Communi, D., Parmentier, M., Majorana, A., Sironi, M., Tabellini, G., Moretta, A. and Sozzani, S. (2007) The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood 109, 3625-3632. https://doi.org/10.1182/blood-2006-08-038844
  5. Wittamer, V., Franssen, J. D., Vulcano, M., Mirjolet, J. F., Le Poul, E., Migeotte, I., Brezillon, S., Tyldesley, R., Blanpain, C., Detheux, M., Mantovani, A., Sozzani, S., Vassart, G., Parmentier, M. and Communi, D. (2003) Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 198, 977-985. https://doi.org/10.1084/jem.20030382
  6. Wittamer, V., Bondue, B., Guillabert, A., Vassart, G., Parmentier, M. and Communi, D. (2005) Neutrophil-mediated maturation of chemerin: a link between innate and adaptive immunity. J. Immunol. 175, 487-493. https://doi.org/10.4049/jimmunol.175.1.487
  7. Zabel, B. A., Allen, S. J., Kulig, P., Allen, J. A., Cichy, J., Handel, T. M. and Butcher, E. C. (2005) Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J. Biol. Chem. 280, 34661-34666. https://doi.org/10.1074/jbc.M504868200
  8. Guillabert, A., Wittamer, V., Bondue, B., Godot, V., Imbault, V., Parmentier, M. and Communi, D. (2008) Role of neutrophil proteinase 3 and mast cell chymase in chemerin proteolytic regulation. J. Leukoc. Biol. 84, 1530-1538. https://doi.org/10.1189/jlb.0508322
  9. Cash, J. L., Hart, R., Russ, A., Dixon, J. P., Colledge, W. H., Doran, J., Hendrick, A. G., Carlton, M. B. and Greaves, D. R. (2008) Synthetic chemerin-derived peptides suppress inflammation through ChemR23. J. Exp. Med. 205, 767-775. https://doi.org/10.1084/jem.20071601
  10. Bozaoglu, K., Bolton, K., McMillan, J., Zimmet, P., Jowett, J., Collier, G., Walder, K. and Segal, D. (2007) Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148, 4687-4694. https://doi.org/10.1210/en.2007-0175
  11. Lehrke, M., Becker, A., Greif, M., Stark, R., Laubender, R. P., von Ziegler, F., Lebherz, C., Tittus, J., Reiser, M., Becker, C., Goke, B., Leber, A. W., Parhofer, K. G. and Broedl, U. C. (2009) Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis. Eur. J. Endocrinol. 161, 339-344. https://doi.org/10.1530/EJE-09-0380
  12. Weigert, J., Neumeier, M., Wanninger, J., Filarsky, M., Bauer, S., Wiest, R., Farkas, S., Scherer, M. N., Schaffler, A., Aslanidis, C., Scholmerich, J. and Buechler, C. (2009) Systemic chemerin is related to inflammation rather than obesity in type 2 diabetes. Clin. Endocrinol. (Oxf). 72, 342-348. https://doi.org/10.1111/j.1365-2265.2009.03664.x
  13. Roh, S. G., Song, S. H., Choi, K. C., Katoh, K., Wittamer, V., Parmentier, M. and Sasaki, S. (2007) Chemerin--a new adipokine that modulates adipogenesis via its own receptor. Biochem. Biophys. Res. Commun. 362, 1013-1018. https://doi.org/10.1016/j.bbrc.2007.08.104
  14. Goralski, K. B., McCarthy, T. C., Hanniman, E. A., Zabel, B. A., Butcher, E. C., Parlee, S. D., Muruganandan, S. and Sinal, C. J. (2007) Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 282, 28175-28188. https://doi.org/10.1074/jbc.M700793200
  15. Takahashi, M., Takahashi, Y., Takahashi, K., Zolotaryov, F. N., Hong, K. S., Kitazawa, R., Iida, K., Okimura, Y., Kaji, H., Kitazawa, S., Kasuga, M. and Chihara, K. (2008) Chemerin enhances insulin signaling and potentiates insulin- stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett. 582, 573-578. https://doi.org/10.1016/j.febslet.2008.01.023
  16. Sell, H., Laurencikiene, J., Taube, A., Eckardt K, Cramer, A., Horrighs, A., Arner, P. and Eckel, J. (2009) Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes 58, 2731-2740. https://doi.org/10.2337/db09-0277
  17. Zabel, B. A., Nakae, S., Zuniga, L., Kim, J. Y., Ohyama, T., Alt, C., Pan, J., Suto, H., Soler, D., Allen, S. J., Handel, T. M., Song, C. H., Galli, S. J. and Butcher, E. C. (2008) Mast cell-expressed orphan receptor CCRL2 binds chemerin and is required for optimal induction of IgE-mediated passive cutaneous anaphylaxis. J. Exp. Med. 205, 2207-2220. https://doi.org/10.1084/jem.20080300
  18. Barnea, G., Strapps, W., Herrada, G., Berman, Y., Ong, J., Kloss, B., Axel, R. and Lee, K. J. (2008) The genetic design of signaling cascades to record receptor activation. Proc. Natl. Acad. Sci. U.S.A. 105, 64-69. https://doi.org/10.1073/pnas.0710487105
  19. Zabel, B. A., Zuniga, L., Ohyama, T., Allen, S. J., Cichy, J., Handel, T. M. and Butcher, E. C. (2006) Chemoattractants, extracellular proteases, and the integrated host defense response. Exp. Hematol. 34, 1021-1032. https://doi.org/10.1016/j.exphem.2006.05.003
  20. Pease, J. E. and Williams, T. J. (2006) The attraction of chemokines as a target for specific anti-inflammatory therapy. Br. J. Pharmacol. 147(Suppl 1), S212-221. https://doi.org/10.1038/sj.bjp.0706475
  21. Martensson, U. E., Owman, C. and Olde, B. (2004) Genomic organization and promoter analysis of the gene encoding the mouse chemoattractant-like receptor, CMKLR1. Gene 328, 167-176. https://doi.org/10.1016/j.gene.2003.12.004
  22. Otteson, D. C., Lai, H., Liu, Y. and Zack, D. J. (2005) Zinc-finger domains of the transcriptional repressor KLF15 bind multiple sites in rhodopsin and IRBP promoters including the CRS-1 and G-rich repressor elements. BMC Mol. Biol. 6, 15. https://doi.org/10.1186/1471-2199-6-15
  23. Wittamer, V., Gregoire, F., Robberecht, P., Vassart, G., Communi, D. and Parmentier, M. (2004) The C-terminal nonapeptide of mature chemerin activates the chemerin receptor with low nanomolar potency. J. Biol. Chem. 279, 9956-9962. https://doi.org/10.1074/jbc.M313016200
  24. Mori, T., Sakaue, H., Iguchi, H., Gomi, H., Okada, Y., Takashima, Y., Nakamura, K., Nakamura, T., Yamauchi, T., Kubota, N., Kadowaki, T., Matsuki, Y., Ogawa, W., Hiramatsu, R. and Kasuga, M. (2005) Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J. Biol. Chem. 280, 12867-12875. https://doi.org/10.1074/jbc.M410515200
  25. Muruganandan, S., Roman, A. and Sinal, C. J. (2009) Role of Chemerin/CMKLR1 Signaling in Adipogenesis and Osteoblastogenesis of Bone Marrow Stem Cells. J. Bone Miner. Res. 25, 222-234.
  26. Yerle, M., Echard, G., Robic, A., Mairal, A., Dubut- Fontana, C., Riquet, J., Pinton, P., Milan, D., Lahbib- Mansais, Y. and Gellin, J. (1996) A somatic cell hybrid panel for pig regional gene mapping characterized by molecular cytogenetics. Cytogenet. Cell Genet. 73, 194-202. https://doi.org/10.1159/000134338
  27. Ramirez-Zacarias, J. L., Castro-Munozledo, F. and Kuri- Harcuch, W. (1992) Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry 97, 493-497. https://doi.org/10.1007/BF00316069

Cited by

  1. Chemerin/chemR23 axis in inflammation onset and resolution vol.64, pp.2, 2015, https://doi.org/10.1007/s00011-014-0792-7
  2. Molecular cloning, tissue distribution and ontogenetic expression of Xiang pig Chemerin and its involvement in regulating energy metabolism through Akt and ERK1/2 signaling pathways vol.39, pp.2, 2012, https://doi.org/10.1007/s11033-011-0934-8
  3. Exploring polymorphisms of the bovine RARRES2 gene and their associations with growth traits vol.39, pp.3, 2012, https://doi.org/10.1007/s11033-011-0980-2
  4. Gpr1 is an active chemerin receptor influencing glucose homeostasis in obese mice vol.222, pp.2, 2014, https://doi.org/10.1530/JOE-14-0069
  5. New roles of the multidimensional adipokine: Chemerin vol.62, 2014, https://doi.org/10.1016/j.peptides.2014.09.019
  6. Chemerin gene expression is regulated by food restriction and food restriction–refeeding in rat adipose tissue but not in liver vol.181, 2013, https://doi.org/10.1016/j.regpep.2012.12.001
  7. Chemerin level in pregnancies complicated by preeclampsia and its relation with disease severity and neonatal outcomes 2016, https://doi.org/10.1080/01443615.2016.1233947
  8. Chemokine-Like Receptor 1 Regulates the Proliferation and Migration of Vascular Smooth Muscle Cells vol.22, 2016, https://doi.org/10.12659/MSM.897832
  9. Whole-exome sequencing in maya indigenous families: variant in PPP1R3A is associated with type 2 diabetes vol.293, pp.5, 2018, https://doi.org/10.1007/s00438-018-1453-2
  10. Possible involvement of the RARRES2/CMKLR1-system in metabolic and reproductive parameters in Holstein dairy cows vol.17, pp.1, 2019, https://doi.org/10.1186/s12958-019-0467-x