DOI QR코드

DOI QR Code

Fertilization and the oocyte-to-embryo transition in C. elegans

  • Marcello, Matthew R. (Waksman Institute and Department of Genetics Rutgers University) ;
  • Singson, Andrew (Waksman Institute and Department of Genetics Rutgers University)
  • Received : 2010.05.21
  • Published : 2010.06.30

Abstract

Fertilization is a complex process comprised of numerous steps. During fertilization, two highly specialized and differentiated cells (sperm and egg) fuse and subsequently trigger the development of an embryo from a quiescent, arrested oocyte. Molecular interactions between the sperm and egg are necessary for regulating the developmental potential of an oocyte, and precise coordination and regulation of gene expression and protein function are critical for proper embryonic development. The nematode Caenorhabditis elegans has emerged as a valuable model system for identifying genes involved in fertilization and the oocyte-to-embryo transition as well as for understanding the molecular mechanisms that govern these processes. In this review, we will address current knowledge of the molecular underpinnings of gamete interactions during fertilization and the oocyte-to-embryo transition in C. elegans. We will also compare our knowledge of these processes in C. elegans to what is known about similar processes in mammalian, specifically mouse, model systems.

Keywords

References

  1. Stitzel, M. L. and Seydoux, G. (2007) Regulation of the oocyte-to-zygote transition. Science 316, 407-408. https://doi.org/10.1126/science.1138236
  2. de Kretser, D. M. (1997) Male infertility. Lancet 349, 787-790. https://doi.org/10.1016/S0140-6736(96)08341-9
  3. O'Flynn O'Brien, K. L., Varghese, A. C. and Agarwal, A. (2010) The genetic causes of male factor infertility: a review. Fertil Steril 93, 1-12. https://doi.org/10.1016/j.fertnstert.2009.10.045
  4. Manetti, G. J. and Honig, S. C. (2010) Update on male hormonal contraception: is the vasectomy in jeopardy? Int. J. Impot. Res. 22, 159-170. https://doi.org/10.1038/ijir.2010.2
  5. Laprise, S. L. (2009) Implications of epigenetics and genomic imprinting in assisted reproductive technologies. Mol. Reprod. Dev. 76, 1006-1018. https://doi.org/10.1002/mrd.21058
  6. Grace, K. S. and Sinclair, K. D. (2009) Assisted reproductive technology, epigenetics, and long-term health: a developmental time bomb still ticking. Semin. Reprod. Med. 27, 409-416. https://doi.org/10.1055/s-0029-1237429
  7. Florman, H. M. and Ducibella, T. (2006) Fertilization in Mammals; in Knobil and Neill's Physiology of Reproduction. Neill, J. D. (ed.), Elsevier, San Diego, USA.
  8. Singson, A., Hang, J. S. and Parry, J. M. (2008) Genes required for the common miracle of fertilization in Caenorhabditis elegans. Int. J. Dev. Biol. 52, 647-656. https://doi.org/10.1387/ijdb.072512as
  9. L'Hernault, S. W. (2006) Spermatogenesis; in Worm-Book: online review of C. elegans biology. Community, T. C. e. R. (ed.), http://www.wormbook.org.
  10. Consortium, T. C. e. S. (1998) Genome sequence of the nematode C. elegans a platform for investigating biology. Science 282, 2012-2018. https://doi.org/10.1126/science.282.5396.2012
  11. Sulston, J. E. and Horvitz, H. R. (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110-156. https://doi.org/10.1016/0012-1606(77)90158-0
  12. Riddle, D. L., Blumenthal, T., Meyer, B. J. and Priess, J. R. (1997) C. elegans II, pp. 1222, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.
  13. Horner, V. L. and Wolfner, M. F. (2008) Transitioning from egg to embryo: triggers and mechanisms of egg activation. Dev. Dyn. 237, 527-544. https://doi.org/10.1002/dvdy.21454
  14. Govindan, J. A. and Greenstein, D. (2007) Embryogenesis: anchors away! Curr. Biol. 17, R890-892. https://doi.org/10.1016/j.cub.2007.08.019
  15. Yamamoto, I., Kosinski, M. E. and Greenstein, D. (2006) Start me up: cell signaling and the journey from oocyte to embryo in C. elegans. Dev. Dyn. 235, 571-585. https://doi.org/10.1002/dvdy.20662
  16. Ikawa, M., Inoue, N., Benham, A. M. and Okabe, M. (2010) Fertilization: a sperm's journey to and interaction with the oocyte. J. Clin. Invest. 120, 984-994. https://doi.org/10.1172/JCI41585
  17. Ward, S. and Carrel, J. S. (1979) Fertilization and sperm competition in the nematode Caenorhabditis elegans. Dev. Biol. 73, 304-321. https://doi.org/10.1016/0012-1606(79)90069-1
  18. Singson, A. (2001) Every sperm is sacred: fertilization in Caenorhabditis elegans. Dev. Biol. 230, 101-109. https://doi.org/10.1006/dbio.2000.0118
  19. Bembenek, J. N., Richie, C. T., Squirrell, J. M., Campbell, J. M., Eliceiri, K. W., Poteryaev, D., Spang, A., Golden, A. and White, J. G. (2007) Cortical granule exocytosis in C. elegans is regulated by cell cycle components including separase. Development 134, 3837-3848. https://doi.org/10.1242/dev.011361
  20. L'Hernault S, W. (1997) Spermatogenesis; in C. Elegans II. Riddle, D. L., Blumenthal, T., Meyer, B. J. and Priess, J. R. (eds.), pp. 271-294, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.
  21. Nelson, G. A. and Ward, S. (1980) Vesicle fusion, pseudopod extension and amoeboid motility are induced in nematode spermatids by the ionophore monensin. Cell 19, 457-464. https://doi.org/10.1016/0092-8674(80)90520-6
  22. Ward, S., Hogan, E. and Nelson, G. A. (1983) The initiation of spermiogenesis in the nematode Caenorhabditis elegans. Dev. Biol. 98, 70-79. https://doi.org/10.1016/0012-1606(83)90336-6
  23. Bandyopadhyay, J., Lee, J., Lee, J. I., Yu, J. R., Jee, C., Cho, J. H., Jung, S., Lee, M. H., Zannoni, S., Singson, A., Kim, D., H., Koo, H. S. and Ahnn, J. (2002) Calcineurin, a calcium/calmodulin-dependent protein phosphatase, is involved in movement, fertility, egg laying, and growth in caenorhabditis elegans. Mol. Biol. Cell 13, 3281- 3293. https://doi.org/10.1091/mbc.E02-01-0005
  24. Washington, N. L. and Ward, S. (2006) FER-1 regulates Ca2+ -mediated membrane fusion during C. elegans spermatogenesis. J. Cell Sci. 119, 2552-2562. https://doi.org/10.1242/jcs.02980
  25. Kubagawa, H. M., Watts, J. L., Corrigan, C., Edmonds, J. W., Sztul, E., Browse, J. and Miller, M. A. (2006) Oocyte signals derived from polyunsaturated fatty acids control sperm recruitment in vivo. Nat. Cell Biol. 8, 1143-1148. https://doi.org/10.1038/ncb1476
  26. Miller, M. A., Nguyen, V. Q., Lee, M. H., Kosinski, M., Schedl, T., Caprioli, R. M. and Greenstein, D. (2001) A sperm cytoskeletal protein that signals oocyte meiotic maturation and ovulation. Science 291, 2144-2147. https://doi.org/10.1126/science.1057586
  27. Samuel, A. D., Murthy, V. N. and Hengartner, M. O. (2001) Calcium dynamics during fertilization in C. elegans. BMC Dev. Biol. 1, 8. https://doi.org/10.1186/1471-213X-1-8
  28. Zannoni, S., L'Hernault, S. W. and Singson, A. W. (2003) Dynamic localization of SPE-9 in sperm: a protein required for sperm-oocyte interactions in Caenorhabditis elegans. BMC Dev. Biol. 3, 10. https://doi.org/10.1186/1471-213X-3-10
  29. Goldstein, B. and Hird, S. N. (1996) Specification of the anteroposterior axis in Caenorhabditis elegans. Development 122, 1467-1474.
  30. Jorgensen, E. M. and Mango, S. E. (2002) The art and design of genetic screens: caenorhabditis elegans. Nat. Rev. Genet. 3, 356-369. https://doi.org/10.1038/nrg794
  31. Nishimura, H. and L'Hernault, S. W. (2010) Spermatogenesis-defective (spe) mutants of the nematode Caenorhabditis elegans provide clues to solve the puzzle of male germline functions during reproduction. Dev. Dyn. 239, 1502-1514.
  32. L'Hernault, S. W., Shakes, D. C. and Ward, S. (1988) Developmental genetics of chromosome I spermatogenesis-defective mutants in the nematode Caenorhabditis elegans. Genetics 120, 435-452.
  33. Kadandale, P., Stewart-Michaelis, A., Gordon, S., Rubin, J., Klancer, R., Schweinsberg, P., Grant, B. D. and Singson, A. (2005) The egg surface LDL receptor repeatcontaining proteins EGG-1 and EGG-2 are required for fertilization in Caenorhabditis elegans. Curr. Biol. 15, 2222-2229. https://doi.org/10.1016/j.cub.2005.10.043
  34. Singson, A., Mercer, K. B. and L'Hernault, S. W. (1998) The C. elegans spe-9 gene encodes a sperm transmembrane protein that contains EGF-like repeats and is required for fertilization. Cell 93, 71-79. https://doi.org/10.1016/S0092-8674(00)81147-2
  35. Putiri, E., Zannoni, S., Kadandale, P. and Singson, A. (2004) Functional domains and temperature-sensitive mutations in SPE-9, an EGF repeat-containing protein required for fertility in Caenorhabditis elegans. Dev. Biol. 272, 448-459. https://doi.org/10.1016/j.ydbio.2004.05.014
  36. Chatterjee, I., Richmond, A., Putiri, E., Shakes, D. C. and Singson, A. (2005) The Caenorhabditis elegans spe-38 gene encodes a novel four-pass integral membrane protein required for sperm function at fertilization. Development 132, 2795-2808. https://doi.org/10.1242/dev.01868
  37. Roberts, T. M., Pavalko, F. M. and Ward, S. (1986) Membrane and cytoplasmic proteins are transported in the same organell complex during nematode spermatogenesis. J. Cell Biology 102, 1787-1796. https://doi.org/10.1083/jcb.102.5.1787
  38. Shakes, D. and Ward, S. (1989) Mutations that disrupt the morphogenesis and localization of a sperm-specific organelle in Caenorhabditis elegans. Developmental Biology 134, 307-316. https://doi.org/10.1016/0012-1606(89)90103-6
  39. Xu, X. Z. and Sternberg, P. W. (2003) A C. elegans sperm TRP protein required for sperm-egg interactions during fertilization. Cell 114, 285-297. https://doi.org/10.1016/S0092-8674(03)00565-8
  40. Castellano, L. E., Trevino, C. L., Rodriguez, D., Serrano, C. J., Pacheco, J., Tsutsumi, V., Felix, R. and Darszon, A. (2003) Transient receptor potential (TRPC) channels in human sperm: expression, cellular localization and involvement in the regulation of flagellar motility. FEBS Lett. 541, 69-74. https://doi.org/10.1016/S0014-5793(03)00305-3
  41. Jungnickel, M. K., Marrero, H., Birnbaumer, L., Lemos, J. R. and Florman, H. M. (2001) Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat. Cell. Biol. 3, 499-502. https://doi.org/10.1038/35074570
  42. Schindl, R. and Romanin, C. (2007) Assembly domains in TRP channels. Biochem. Soc. Trans. 35, 84-85. https://doi.org/10.1042/BST0350084
  43. Beech, D. J., Bahnasi, Y. M., Dedman, A. M. and Al-Shawaf, E. (2009) TRPC channel lipid specificity and mechanisms of lipid regulation. Cell Calcium 45, 583-588. https://doi.org/10.1016/j.ceca.2009.02.006
  44. Kroft, T. L., Gleason, E. J. and L'Hernault S, W. (2005) The spe-42 gene is required for sperm-egg interactions during C. elegans fertilization and encodes a sperm-specific transmembrane protein. Dev. Biol. 286, 169-181. https://doi.org/10.1016/j.ydbio.2005.07.020
  45. Miyamoto, T. (2006) The dendritic cell-specific transmembrane protein DC-STAMP is essential for osteoclast fusion and osteoclast bone-resorbing activity. Mod. Rheumatol. 16, 341-342. https://doi.org/10.1007/s10165-006-0524-0
  46. Albert, T. K., Hanzawa, H., Legtenberg, Y. I., de Ruwe, M. J., van den Heuvel, F. A., Collart, M. A., Boelens, R. and Timmers, H. T. (2002) Identification of a ubiquitin-protein ligase subunit within the CCR4-NOT transcription repressor complex. EMBO J. 21, 355-364. https://doi.org/10.1093/emboj/21.3.355
  47. Hanzawa, H., de Ruwe, M. J., Albert, T. K., van Der Vliet, P. C., Timmers, H. T. and Boelens, R. (2001) The structure of the C4C4 ring finger of human NOT4 reveals features distinct from those of C3HC4 RING fingers. J. Biol. Chem. 276, 10185-10190. https://doi.org/10.1074/jbc.M009298200
  48. Deshaies, R. J. and Joazeiro, C. A. (2009) RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399-434. https://doi.org/10.1146/annurev.biochem.78.101807.093809
  49. Nykjaer, A. and Willnow, T. E. (2002) The low-density lipoprotein receptor gene family: a cellular Swiss army knife? Trends. Cell Biol. 12, 273-280. https://doi.org/10.1016/S0962-8924(02)02282-1
  50. Vjugina, U. and Evans, J. P. (2008) New insights into the molecular basis of mammalian sperm-egg membrane interactions. Front. Biosci. 13, 462-476. https://doi.org/10.2741/2693
  51. Okabe, M., Adachi, T., Takada, K., Oda, H., Yagasaki, M., Kohama, Y. and Mimura, T. (1987) Capacitation-related changes in antigen distribution on mouse sperm heads and its relation to fertilization rate in vitro. J. Reprod. Immunol. 11, 91-100. https://doi.org/10.1016/0165-0378(87)90014-3
  52. Okabe, M., Yagasaki, M., Oda, H., Matzno, S., Kohama, Y. and Mimura, T. (1988) Effect of a monoclonal anti-mouse sperm antibody (OBF13) on the interaction of mouse sperm with zona-free mouse and hamster eggs. J. Reprod. Immunol. 13, 211-219. https://doi.org/10.1016/0165-0378(88)90002-2
  53. Inoue, N., Ikawa, M., Isotani, A. and Okabe, M. (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434, 234-238. https://doi.org/10.1038/nature03362
  54. Inoue, N., Ikawa, M. and Okabe, M. (2008) Putative sperm fusion protein IZUMO and the role of N-glycosylation. Biochem. Biophys. Res. Commun. 377, 910-914. https://doi.org/10.1016/j.bbrc.2008.10.073
  55. Sosnik, J., Miranda, P. V., Spiridonov, N. A., Yoon, S. Y., Fissore, R. A., Johnson, G. R. and Visconti, P. E. (2009) Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. J. Cell Sci. 122, 2741-2749. https://doi.org/10.1242/jcs.047225
  56. Gadella, B. M., Tsai, P. S., Boerke, A. and Brewis, I. A. (2008) Sperm head membrane reorganisation during capacitation. Int. J. Dev. Biol. 52, 473-480. https://doi.org/10.1387/ijdb.082583bg
  57. Toshimori, K., Saxena, D. K., Tanii, I. and Yoshinaga, K. (1998) An MN9 antigenic molecule, equatorin, is required for successful sperm-oocyte fusion in mice. Biol. Reprod. 59, 22-29. https://doi.org/10.1095/biolreprod59.1.22
  58. Ellerman, D. A., Pei, J., Gupta, S., Snell, W. J., Myles, D. and Primakoff, P. (2009) Izumo is part of a multiprotein family whose members form large complexes on mammalian sperm. Mol. Reprod. Dev. 76, 1188-1199. https://doi.org/10.1002/mrd.21092
  59. Le Naour, F., Rubinstein, E., Jasmin, C., Prenant, M. and Boucheix, C. (2000) Severely reduced female fertility in CD9-deficient mice. Science 287, 319-321. https://doi.org/10.1126/science.287.5451.319
  60. Miyado, K., Yamada, G., Yamada, S., Hasuwa, H., Nakamura, Y., Ryu, F., Suzuki, K., Kosai, K., Inoue, K., Ogura, A., Okabe, M. and Mekada, E. (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287, 321-324. https://doi.org/10.1126/science.287.5451.321
  61. Kaji, K., Oda, S., Shikano, T., Ohnuki, T., Uematsu, Y., Sakagami, J., Tada, N., Miyazaki, S. and Kudo, A. (2000) The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat. Genet. 24, 279-282. https://doi.org/10.1038/73502
  62. Miyado, K., Yoshida, K., Yamagata, K., Sakakibara, K., Okabe, M., Wang, X., Miyamoto, K., Akutsu, H., Kondo, T., Takahashi, Y., Ban, T., Ito, C., Toshimori, K., Nakamura, A., Ito, M., Miyado, M., Mekada, E. and Umezawa, A. (2008) The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc. Natl. Acad. Sci. U.S.A. 105, 12921-12926. https://doi.org/10.1073/pnas.0710608105
  63. Barraud-Lange, V., Naud-Barriant, N., Bomsel, M., Wolf, J. P. and Ziyyat, A. (2007) Transfer of oocyte membrane fragments to fertilizing spermatozoa. FASEB J. 21, 3446-3449. https://doi.org/10.1096/fj.06-8035hyp
  64. Gupta, S., Primakoff, P. and Myles, D. G. (2009) Can the presence of wild-type oocytes during insemination rescue the fusion defect of CD9 null oocytes? Mol. Reprod. Dev. 76, 602. https://doi.org/10.1002/mrd.21040
  65. Ito, C., Yamatoya, K., Yoshida, K., Maekawa, M., Miyado, K. and Toshimori, K. (2010) Tetraspanin family protein CD9 in the mouse sperm: unique localization, appearance, behavior and fate during fertilization. Cell Tissue Res. 340, 583-594. https://doi.org/10.1007/s00441-010-0967-7
  66. McNally, K. L. and McNally, F. J. (2005) Fertilization initiates the transition from anaphase I to metaphase II during female meiosis in C. elegans. Dev. Biol. 282, 218-230. https://doi.org/10.1016/j.ydbio.2005.03.009
  67. Golden, A., Sadler, P. L., Wallenfang, M. R., Schumacher, J. M., Hamill, D. R., Bates, G., Bowerman, B., Seydoux, G. and Shakes, D. C. (2000) Metaphase to anaphase (mat) transition-defective mutants in Caenorhabditis elegans. J. Cell Biol. 151, 1469-1482. https://doi.org/10.1083/jcb.151.7.1469
  68. Browning, H. and Strome, S. (1996) A sperm-supplied factor required for embryogenesis in C. elegans. Development 122, 391-404.
  69. Hill, D. P., Shakes, D. C., Ward, S. and Strome, S. (1989) A sperm-supplied product essential for initiation of normal embryogenesis in Caenorhabditis elegans is encoded by the paternal-effect embryonic-lethal gene, spe-11 [published erratum appears in Dev Biol 1990 May;139(1):230]. Dev. Biol. 136, 154-166. https://doi.org/10.1016/0012-1606(89)90138-3
  70. Jantsch-Plunger, V., Gonczy, P., Romano, A., Schnabel, H., Hamill, D., Schnabel, R., Hyman, A. A. and Glotzer, M. (2000) CYK-4: A Rho family gtpase activating protein (GAP) required for central spindle formation and cytokinesis. J. Cell Biol. 149, 1391-1404. https://doi.org/10.1083/jcb.149.7.1391
  71. Jenkins, N., Saam, J. R. and Mango, S. E. (2006) CYK-4/GAP provides a localized cue to initiate anteroposterior polarity upon fertilization. Science 313, 1298-1301. https://doi.org/10.1126/science.1130291
  72. Maruyama, R., Velarde, N. V., Klancer, R., Gordon, S., Kadandale, P., Parry, J. M., Hang, J. S., Rubin, J., Stewart-Michaelis, A., Schweinsberg, P., Grant, B. D., Piano, F., Sugimoto, A. and Singson, A. (2007) EGG-3 regulates cell-surface and cortex rearrangements during egg activation in Caenorhabditis elegans. Curr. Biol. 17, 1555-1560. https://doi.org/10.1016/j.cub.2007.08.011
  73. Parry, J. M., Velarde, N. V., Lefkovith, A. J., Zegarek, M. H., Hang, J. S., Ohm, J., Klancer, R., Maruyama, R., Druzhinina, M. K., Grant, B. D., Piano, F. and Singson, A. (2009) EGG-4 and EGG-5 Link Events of the Oocyte-to-Embryo Transition with Meiotic Progression in C. elegans. Curr. Biol. 19, 1752-1757. https://doi.org/10.1016/j.cub.2009.09.015
  74. Stitzel, M. L., Cheng, K. C. and Seydoux, G. (2007) Regulation of MBK-2/Dyrk kinase by dynamic cortical anchoring during the oocyte-to-zygote transition. Curr. Biol. 17, 1545-1554. https://doi.org/10.1016/j.cub.2007.08.049
  75. Cheng, K. C., Klancer, R., Singson, A. and Seydoux, G. (2009) Regulation of MBK-2/DYRK by CDK-1 and the pseudophosphatases EGG-4 and EGG-5 during the oocyte-to-embryo transition. Cell 139, 560-572. https://doi.org/10.1016/j.cell.2009.08.047
  76. Tonks, N. K. (2009) Pseudophosphatases: grab and hold on. Cell 139, 464-465. https://doi.org/10.1016/j.cell.2009.10.008
  77. Pils, B. and Schultz, J. (2004) Evolution of the multifunctional protein tyrosine phosphatase family. Mol. Biol. Evol. 21, 625-631. https://doi.org/10.1093/molbev/msh055
  78. Tonks, N. K. (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell. Biol. 7, 833-846. https://doi.org/10.1038/nrm2039
  79. Harris, M. T., Lai, K., Arnold, K., Martinez, H. F., Specht, C. A. and Fuhrman, J. A. (2000) Chitin synthase in the filarial parasite, Brugia malayi. Mol. Biochem. Parasitol. 111, 351-362. https://doi.org/10.1016/S0166-6851(00)00328-5
  80. Veronico, P., Gray, L. J., Jones, J. T., Bazzicalupo, P., Arbucci, S., Cortese, M. R., Di Vito, M. and De Giorgi, C. (2001) Nematode chitin synthases: gene structure, expression and function in Caenorhabditis elegans and the plant parasitic nematode Meloidogyne artiellia. Mol. Genet. Genomics. 266, 28-34. https://doi.org/10.1007/s004380100513
  81. Zhang, Y., Foster, J. M., Nelson, L. S., Ma, D. and Carlow, C. K. (2005) The chitin synthase genes chs-1 and chs-2 are essential for C. elegans development and responsible for chitin deposition in the eggshell and pharynx, respectively. Dev. Biol. 285, 330-339. https://doi.org/10.1016/j.ydbio.2005.06.037
  82. Guven-Ozkan, T., Nishi, Y., Robertson, S. M. and Lin, R. (2008) Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4. Cell 135, 149-160. https://doi.org/10.1016/j.cell.2008.07.040
  83. Nishi, Y., Rogers, E., Robertson, S. M. and Lin, R. (2008) Polo kinases regulate C. elegans embryonic polarity via binding to DYRK2-primed MEX-5 and MEX-6. Development 135, 687-697. https://doi.org/10.1242/dev.013425
  84. Pang, K. M., Ishidate, T., Nakamura, K., Shirayama, M., Trzepacz, C., Schubert, C. M., Priess, J. R. and Mello, C. C. (2004) The minibrain kinase homolog, mbk-2, is required for spindle positioning and asymmetric cell division in early C. elegans embryos. Dev. Biol. 265, 127-139. https://doi.org/10.1016/j.ydbio.2003.09.024
  85. Pellettieri, J., Reinke, V., Kim, S. K. and Seydoux, G. (2003) Coordinate activation of maternal protein degradation during the egg-to-embryo transition in C. elegans. Dev. Cell 5, 451-462. https://doi.org/10.1016/S1534-5807(03)00231-4
  86. Quintin, S., Mains, P. E., Zinke, A. and Hyman, A. A. (2003) The mbk-2 kinase is required for inactivation of MEI-1/katanin in the one-cell Caenorhabditis elegans embryo. EMBO Rep. 4, 1175-1181. https://doi.org/10.1038/sj.embor.7400029
  87. Srayko, M., Buster, D. W., Bazirgan, O. A., McNally, F. J. and Mains, P. E. (2000) MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis. Genes. Dev. 14, 1072-1084.
  88. Saunders, C. M., Larman, M. G., Parrington, J., Cox, L. J., Royse, J., Blayney, L. M., Swann, K. and Lai, F. A. (2002) PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development 129, 3533-3544.
  89. Swann, K., Saunders, C. M., Rogers, N. T. and Lai, F. A. (2006) PLCzeta (zeta): a sperm protein that triggers Ca2+ oscillations and egg activation in mammals. Semin. Cell Dev. Biol. 17, 264-273. https://doi.org/10.1016/j.semcdb.2006.03.009
  90. Ducibella, T. and Fissore, R. (2008) The roles of Ca2+, downstream protein kinases, and oscillatory signaling in regulating fertilization and the activation of development. Dev. Biol. 315, 257-279. https://doi.org/10.1016/j.ydbio.2007.12.012
  91. Liu, J. and Maller, J. L. (2005) Calcium elevation at fertilization coordinates phosphorylation of XErp1/Emi2 by Plx1 and CaMK II to release metaphase arrest by cytostatic factor. Curr. Biol. 15, 1458-1468. https://doi.org/10.1016/j.cub.2005.07.030
  92. Rauh, N. R., Schmidt, A., Bormann, J., Nigg, E. A. and Mayer, T. U. (2005) Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature 437, 1048-1052. https://doi.org/10.1038/nature04093
  93. Hansen, D. V., Tung, J. J. and Jackson, P. K. (2006) CaMKII and polo-like kinase 1 sequentially phosphorylate the cytostatic factor Emi2/XErp1 to trigger its destruction and meiotic exit. Proc. Natl. Acad. Sci. U.S.A. 103, 608-613. https://doi.org/10.1073/pnas.0509549102
  94. Wessel, G. M., Brooks, J. M., Green, E., Haley, S., Voronina, E., Wong, J., Zaydfudim, V. and Conner, S. (2001) The biology of cortical granules. Int. Rev. Cytol. 209, 117-206. https://doi.org/10.1016/S0074-7696(01)09012-X
  95. Matson, S., Markoulaki, S. and Ducibella, T. (2006) Antagonists of myosin light chain kinase and of myosin II inhibit specific events of egg activation in fertilized mouse eggs. Biol. Reprod. 74, 169-176. https://doi.org/10.1095/biolreprod.105.046409
  96. Sato, M., Grant, B. D., Harada, A. and Sato, K. (2008) Rab11 is required for synchronous secretion of chondroitin proteoglycans after fertilization in Caenorhabditis elegans. J. Cell Sci. 121, 3177-3186. https://doi.org/10.1242/jcs.034678
  97. Gardner, A. J., Williams, C. J. and Evans, J. P. (2007) Establishment of the mammalian membrane block to polyspermy: evidence for calcium-dependent and -independent regulation. Reproduction 133, 383-393. https://doi.org/10.1530/REP-06-0304
  98. Gardner, A. J., Knott, J. G., Jones, K. T. and Evans, J. P. (2007) CaMKII can participate in but is not sufficient for the establishment of the membrane block to polyspermy in mouse eggs. J. Cell Physiol. 212, 275-280. https://doi.org/10.1002/jcp.21046
  99. Wortzman-Show, G. B., Kurokawa, M., Fissore, R. A. and Evans, J. P. (2007) Calcium and sperm components in the establishment of the membrane block to polyspermy: studies of ICSI and activation with sperm factor. Mol. Hum. Reprod. 13, 557-565. https://doi.org/10.1093/molehr/gam042
  100. Gardner, A. J. and Evans, J. P. (2006) Mammalian membrane block to polyspermy: new insights into how mammalian eggs prevent fertilisation by multiple sperm. Reprod. Fertil. Dev. 18, 53-61. https://doi.org/10.1071/RD05122

Cited by

  1. Initial diameter of the polar body contractile ring is minimized by the centralspindlin complex vol.359, pp.1, 2011, https://doi.org/10.1016/j.ydbio.2011.08.013
  2. The Sperm TRP-3 Channel Mediates the Onset of a Ca 2+ Wave in the Fertilized C. elegans Oocyte vol.15, pp.3, 2016, https://doi.org/10.1016/j.celrep.2016.03.040
  3. GLD-2/RNP-8 cytoplasmic poly(A) polymerase is a broad-spectrum regulator of the oogenesis program vol.107, pp.40, 2010, https://doi.org/10.1073/pnas.1012611107
  4. Macro-level Modeling of the Response of C. elegans Reproduction to Chronic Heat Stress vol.8, pp.1, 2012, https://doi.org/10.1371/journal.pcbi.1002338
  5. Reproductive isolation in the Elegans-Group of Caenorhabditis vol.05, pp.04, 2013, https://doi.org/10.4236/ns.2013.54A004
  6. Fertilization in C. elegans requires an intact C-terminal RING finger in sperm protein SPE-42 vol.11, pp.1, 2011, https://doi.org/10.1186/1471-213X-11-10