DOI QR코드

DOI QR Code

Retrospective analyses of the bottleneck in purification of eukaryotic proteins from Escherichia coli as affected by molecular weight, cysteine content and isoelectric point

  • Jeon, Won-Bae (Laboratory of Biochemistry and Biodefense Program, Daegu Gyeongbuk Institute of Science and Technology)
  • Received : 2010.02.08
  • Accepted : 2010.03.03
  • Published : 2010.05.31

Abstract

Experimental bioinformatics data obtained from an E. coli cell-based eukaryotic protein purification experiment were analyzed in order to identify any bottleneck as well as the factors affecting the target purification. All targets were expressed as His-tagged maltose-binding protein (MBP) fusion constructs and were initially purified by immobilized metal affinity chromatography (IMAC). The targets were subsequently separated from the His-tagged MBP through TEV protease cleavage followed by a second IMAC isolation. Of the 743 total purification trials, 342 yielded more than 3 mg of target proteins for structural studies. The major reason for failure of target purification was poor TEV proteolysis. The overall success rate for target purification decreased linearly as cysteine content or isoelectric point (pI) of the target increased. This pattern of pI versus overall success rate strongly suggests that pI should be incorporated into target scoring criteria with a threshold value.

Keywords

References

  1. Lesley, S. A. (2001) High-Throughput proteomics: protein expression and purification in the postgenomic world. Protein Expr. Purif. 122, 159-164.
  2. Mus-Veteau, I. (2002) Heterologous expression and purification systems for structural proteomics of mammalian membrane proteins. Comp. Funct. Genomics 3, 511-517. https://doi.org/10.1002/cfg.218
  3. Gathmann, S., Rupprecht, E. and Schneider, D. (2006) High level expression of a protein precursor for functional studies. BMB Reports 39, 717-721. https://doi.org/10.5483/BMBRep.2006.39.6.717
  4. Chrunyk, B. A., Evans, J., Lillquist, J., Young, P. and Wetzel, R. (1993) Inclusion body formation and protein stability in sequence variants of interleukin-1 beta. J. Biol. Chem. 268, 18053-18061.
  5. Kapust, R. B. and Waugh, D. S. (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci. 8, 1668-1674 https://doi.org/10.1110/ps.8.8.1668
  6. Norvell, J. C. and Machalek, A. Z. (2000) Structural genomics programs at the US National Institute of General Medical Sciences. Nature Struct. Biol. 7, 31.
  7. Rodrigues, A. P. C., Grant, B. J. and Hubbard, R. E. (2006) sgTarget: a target selection resource for structural genomics. Nucleic Acids Res. 34, W225-W230. https://doi.org/10.1093/nar/gkl121
  8. Wrobel R. L., Bingman C. A., Jeon W. B., Song J., Vinarov D. A., Frederick R. O., Aceti D. J., Sreenath H. K., Zolnai Z., Vojtik F. C., Bitto E., Fox B. G., Phillips Jr., G. N. and Markley J. L. (2006) Structural Proteomics; in Plant Proteomics, Finnie, C. (ed.), pp. 99-128, Blackwell Publishing, Oxford, USA.
  9. Porath, J., Carlsson, J., Olsson, I. and Belfrage, G. (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258, 598-599. https://doi.org/10.1038/258598a0
  10. di Guan, C., Li, P., Riggs, P. D. and Inouye, H. (1988) Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene 67, 21-30. https://doi.org/10.1016/0378-1119(88)90004-2
  11. Jeon, W. B., Aceti, D. J., Bingman, C. A., Vojtik, F. C., Olson, A. C., Ellefson, J. M., McCombs, J. E., Sreenath, H. K., Blommel, P. G., Seder, K. D., Burns, B. T., Geetha, H. V., Harms, A. C., Sabat, G., Sussman, M. R., Fox, B. G. and Phillips Jr., G. N. (2005) High-throughput purification and quality assurance of Arabidopsis thaliana proteins for eukaryotic structural genomics. J. Struct. Funct. Genomics 6, 143-147. https://doi.org/10.1007/s10969-005-1908-7
  12. Kadokura, H., Katzen, F. and Beckwith, J. Protein disulfide bond formation in prokaryotes. Annu. Rev. Biochem. 72, 111-135. https://doi.org/10.1146/annurev.biochem.72.121801.161459
  13. Fahnert, B., Veijola, J., Roel, G., Karkkainen, M. K., Railo, A., Destree, O., Neubauer, P. and Vainio, S. (2004) Murine Wnt-1 with an internal c-myc tag recombinantly produced in Escherichia coli can induce intracellular signaling of the canonical Wnt pathway in eukaryotic cells. J. Biol. Chem. 279, 47520-47527. https://doi.org/10.1074/jbc.M403207200
  14. Bessette, P. H., Aslund, F., Beckwith, J. and Georgiou, G. (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. Natl. Acad. Sci. U.S.A. 96, 13703-13708. https://doi.org/10.1073/pnas.96.24.13703
  15. Kondo, A., Kohda, J., Endo, Y., Shiromizu, T., Kurokawa, Y., Nishihara, K., Yanagi, H., Yura, T. and Fukuda, H. (2000) Improvement of productivity of active horseradish peroxidase in Escherichia coli by coexpression of Dsb proteins. J. Biosci. Bioeng. 90, 600-606. https://doi.org/10.1263/jbb.90.600
  16. Wu, S., Wan, P., Li, J., Li, D., Zhu, Y. and He, F. (2006) Multi-modality of pI distribution in whole proteome. Proteomics 6, 449-455. https://doi.org/10.1002/pmic.200500221
  17. Weiller, G. F., Caraux, G. and Sylvester, N. (2004) The modal distribution of protein isoelectric points reflects amino acid properties rather than sequence evolution. Proteomics 4, 943-949. https://doi.org/10.1002/pmic.200200648
  18. Schwartz, R., Ting, C. S. and King, J. (2001) Whole proteome pI values correlate with subcellular localizations of proteins for organisms within the three domains of life. Genome Res. 11, 703-709. https://doi.org/10.1101/gr.GR-1587R
  19. Jeon, W. B., Allard, S. T. M., Bingman, C. A., Bitto, E., Han, B. W., Wesenberg, G. E. and Phillips Jr., G. N. (2006) X-ray crystal structures of the conserved hypothetical proteins from Arabidopsis thaliana gene loci At5g11950 and At2g37210. Proteins 65, 1051-1054. https://doi.org/10.1002/prot.21166
  20. Phillips, G. N., Jr, Fox, B. G., Markley, J. L., Volkman, B. F., Bae, E., Bitto, E., Bingman, C. A., Frederick, R. O., McCoy, J. G., Lytle, B. L., Pierce, B. S., Song, J. and Twigger, S. N. (2007) Structures of proteins of biomedical interest from the Center for Eukaryotic Structural Genomics. J. Struct. Funct. Genomics 8, 73-84. https://doi.org/10.1007/s10969-007-9023-6
  21. Altschul, S. F., Gish, W., Miller, W. and Myers, E. W. (1990) Lipman DJ: Basic local alignment search tool. J. Mol. Biol. 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  22. Murzin, A. G., Brenner, S. E., Hubbard, T. and Chothia, C. (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536-540.
  23. Krogh, A., Larsson, B., von Heijne, G. and Sonnhammer, E. L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567-580. https://doi.org/10.1006/jmbi.2000.4315
  24. Tusnady, G. E. and Simon, I. (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17, 849-850. https://doi.org/10.1093/bioinformatics/17.9.849
  25. Nielsen, H., Engelbrecht, J., Brunak, S. and von Heijne, G. (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1-6. https://doi.org/10.1093/protein/10.1.1
  26. Emanuelsson, O., Nielsen, H., Brunak, S. and von Heijne, G. (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1005-1016. https://doi.org/10.1006/jmbi.2000.3903
  27. Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E. L. L., Studholme, D. J., Yeats, C. and Eddy, S. R. (2004) The Pfam protein families database. Nucleic. Acids. Res. 32, D138-D141. https://doi.org/10.1093/nar/gkh121
  28. Wootton, J. C. and Federhen, S. (1993) Statistics of local complexity in amino acid sequences and sequence databases. Comput. Chem. 17, 149-163. https://doi.org/10.1016/0097-8485(93)85006-X
  29. Stolc, V., Samanta, M. P., Tongprasit, W., Sethi, H., Liang, S., Nelson, D. C., Hegeman, A., Nelson, C., Rancour, D., Bednarek, S., Ulrich, E. L., Zhao, Q., Wrobel, R. L., Newman, C. S., Fox, B. G., Phillips Jr., G. N., Markley, J. L. and Sussman, M. R (2005) Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays. Proc. Natl. Acad. Sci. 102, 4453-4458. https://doi.org/10.1073/pnas.0408203102
  30. Dunker, A. K., Obradovic, Z., Romero, P., Garner, E. C. and Brown, C. J. (2000) Instrinsic protein disorder in complete genomes. Genome Inform. 11, 161-171.
  31. Thao, S., Zhao, Q., Kimball, T., Steffan, E., Blommel, P. G., Riters, M., Newman, C. S., Fox, B. G. and Wrobel, R. L. (2004) Results from high-throughput DNA cloning of Arabidopsis thaliana target genes using site-specific recombination. J. Struct. Funct. Genomics 5, 267-276. https://doi.org/10.1007/s10969-004-7148-4
  32. Sreenath, H. K., Bingman, C. A., Buchan, B. W., Seder, K. D., Burns, B. T., Geetha, H. V., Jeon, W. B., Vojtik, F. C., Aceti, D. J., Frederick, R. O., Phillips Jr., G. N. and Fox, B. G. (2005) Protocols for production of selenomethionine-labeled proteins in 2-L polyethylene terephthalate bottles using auto-induction medium. Protein Expr. Purif. 40, 256-267. https://doi.org/10.1016/j.pep.2004.12.022
  33. Tyler, R. C., Sreenath, H. K., Aceti, D. J., Bingman, C. A., Singh, S., Markley, J. L. and Fox, B. G. (2005) Auto-induction medium for the production of [U-15N] and [U-13C, U-15N]-labeled proteins for NMR screening and structure determination. Protein Expr. Purif. 40, 268-278. https://doi.org/10.1016/j.pep.2004.12.024
  34. Zolnai, Z., Lee, P. T., Li, J., Chapman, M. R., Newman, C. S., Phillips Jr., G. N., Rayment, I., Ulrich, E. L., Volkman, B. F. and Markley, J. L. (2003) Project management system for structural and functional proteomics: Sesame. J. Struct. Funct. Genomics 4, 11-23. https://doi.org/10.1023/A:1024684404761