DOI QR코드

DOI QR Code

Comparative analysis of fat and muscle proteins in fenofibratefed type II diabetic OLETF rats: the fenofibrate-dependent expression of PEBP or C11orf59 protein

  • Hahm, Jong-Ryeal (Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Ahn, Jin-Sook (Department of Biochemistry, Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Noh, Hae-Sook (Department of Biochemistry, Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Baek, Seon-Mi (Department of Biochemistry, Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Ha, Ji-Hye (Department of Biochemistry, Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Jung, Tae-Sik (Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • An, Yong-Jun (Department of Internal Medicine, Dong-A University College of Medicine) ;
  • Kim, Duk-Kyu (Department of Internal Medicine, Dong-A University College of Medicine) ;
  • Kim, Deok-Ryong (Department of Biochemistry, Institute of Health Sciences, Gyeongsang National University School of Medicine)
  • Received : 2010.01.15
  • Accepted : 2010.03.05
  • Published : 2010.05.31

Abstract

Fenofibrate, an agonist of $PPAR{\alpha}$, plays an important role in activating many proteins catalyzing lipid metabolism, and it also has a considerable effect on improvement of insulin sensitivity in the diabetic condition. To investigate fenofibrate-dependent expression of peripheral tissue proteins in diabetes, we analyzed whole muscle or fat proteins of fenofibrate-fed OLETF rats, an animal model of type II diabetes, using 2-dimensional gel electrophoresis. We found that many proteins were specifically expressed in a fenofibrate-dependent manner in these diabetic rats. In particular, a functionally unknown C11orf59 protein was differentially expressed in the muscle tissues (about 5-fold increase) in fenofibrate-fed OLETF rats as compared to control rats. Additionally, the signal proteins phosphatidylethanolamine binding protein and IkB interacting protein were differentially regulated in the fenofibrate-treated adipose tissues. We suggest here that these proteins might be involved in controlling lipid or carbohydrate metabolism in diabetes via $PPAR{\alpha}$ activation.

Keywords

References

  1. Carey, D. G., Cowin, G. J., Galloway, G. J., Jones, N. P., Richards, J. C., Biswas, N. and Doddrell, D. M. (2002) Effect of rosiglitazone on insulin sensitivity and body composition in type 2 diabetic patients. Obes. Res, 10, 1008-1015. https://doi.org/10.1038/oby.2002.137
  2. Staels, B., Dallongeville, J., Auwerx, J., Schoonjans, K., Leitersdorf, E. and Fruchart, J. C. (1998) Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98, 2088-2093. https://doi.org/10.1161/01.CIR.98.19.2088
  3. Kelly, D. E., Goodpaster, B., Wing, R. R. and Simoneau, J. A. (1999) Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am. J. Physiol. 277, 1130-1141. https://doi.org/10.1152/ajpcell.1999.277.6.C1130
  4. Lee, H. J., Choi, S. S., Park, M. K., An, Y. J., Seo, S. Y., Kim, M. C., Hong, S. H., Hwang, T. H., Kang, D. Y., Garber, A. J. and Kim, D. K. (2002) Fenofibrate lowers abdominal and skeletal adiposity and improves insulin sensitivity in OLETF rats. Biochem. Biophys. Res. Commun. 296, 293-299. https://doi.org/10.1016/S0006-291X(02)00822-7
  5. Koh, E. H., Kim, M. S., Park, J. Y., Kim, H. S., Youn, J. Y., Park, H. S., Youn, J. H. and Lee, K. U. (2003) Peroxisome proliferator-activated receptor (PPAR)-alpha activation prevents diabetes in OLETF rats: comparison with PPAR-gamma activation. Diabetes 52, 2331-2337. https://doi.org/10.2337/diabetes.52.9.2331
  6. Lee, H. J., Park, M. K., Lee, K. I., An, Y. J., Kim, J. M., Park, J. Y., Han, Y, Hong, S. H., Choi, S. S., Yoo, Y. H., Suh, J. D. and Kim, D. K. (2007) Prevention of diabetes by fenofibrate in OLETF rats: hepatic mechanism for reducing visceral adiposity. J. Korean Diabetes Assoc. 31, 63-74. https://doi.org/10.4093/jkda.2007.31.1.63
  7. Ye, J. M., Doyle, P. J., Iglesias, M. A., Watson, D. G., Cooney, G. J. and Kraegen, E. W. (2001) Peroxisome proliferator-activated receptor (PPAR)-alpha activation lowers muscle lipids and improves insulin sensitivity in high fatfed rats: comparison with PPAR-gamma activation. Diabetes 50, 411-417. https://doi.org/10.2337/diabetes.50.2.411
  8. Guerre-Millo, M., Gervois, P., Raspé, E., Madsen, L., Poulain, P., Derudas, B., Herbert, J. M., Winegar, D. A., Willson, T. M., Fruchart, J. C., Berge, R. K. and Staels, B. (2000) Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity. J. Biol. Chem. 275, 16638-16642. https://doi.org/10.1074/jbc.275.22.16638
  9. Zambon, A. and Cusi, K. (2007) The role of fenofibrate in clinical practice. Diabetes Vasc. Dis. Res. 4, 15-20. https://doi.org/10.3132/dvdr.2007.053
  10. Srivastava, R. A., Jahagirdar, R., Azhar, S., Sharma, S. and Bisgaier, C. L. (2006) Peroxisome proliferator-activated receptor-alpha selective ligand reduces adiposity, improves insulin sensitivity and inhibits atherosclerosis in LDL receptor-deficient mice. Mol. Cell. Biochem. 285, 35-50. https://doi.org/10.1007/s11010-005-9053-y
  11. Seo, Y. S., Kim, J. H., Jo, N. Y., Choi, K. M., Baik, S. H., Park, J. J., Kim, J. S., Byun, K. S., Bak, Y. T., Lee, C. H., Kim, A. and Yeon, J. E. (2008) PPAR agonists treatment is effective in a nonalcoholic fatty liver disease animal model by modulating fatty-acid metabolic enzymes. J. Gastroenterol. Hepatol. 23, 102-109.
  12. Hogue, J. C., Lamarche, B., Tremblay, A. J., Bergeron, J., Gagne, C. and Couture, P. (2008) Differential effect of atorvastatin and fenofibrate on plasma oxidized low-density lipoprotein, inflammation markers, and cell adhesion molecules in patients with type 2 diabetes mellitus. Metabolism 57, 380-386. https://doi.org/10.1016/j.metabol.2007.10.014
  13. Aasum, E., Khalid, A. M., Gudbrandsen, O. A., How, O. J., Berge, R. K. and Larsen, T. S. (2008) Fenofibrate modulates cardiac and hepatic metabolism and increases ischemic tolerance in diet-induced obese mice. J. Mol. Cell. Cardiol. 44, 201-209. https://doi.org/10.1016/j.yjmcc.2007.08.020
  14. Zhao, Z., Lee, Y. J., Kim, S. K., Kim, H. J., Shim, W. S., Ahn, C. W., Lee, H. C., Cha, B. S. and Ma, Z. A. (2009) Rosiglitazone and fenofibrate improve insulin sensitivity of pre-diabetic OLETF rats by reducing malonyl-CoA levels in the liver and skeletal muscle. Life Sci. 84, 688-695. https://doi.org/10.1016/j.lfs.2009.02.021
  15. Park, C. W., Zhang, Y., Zhang, X., Wu, J., Chen, L., Cha, D. R., Su, D., Hwang, M. T., Fan, X., Davis, L., Striker, G., Zheng, F., Breyer, M. and Guan, Y. (2006) PPARalpha agonist fenofibrate improves diabetic nephropathy in db/db mice. Kidney Int. 69, 1511-1517. https://doi.org/10.1038/sj.ki.5000209
  16. Chen, Y. J. and Quilley, J. (2008) Fenofibrate treatment of diabetic rats reduces nitrosative stress, renal cyclooxygenase-2 expression, and enhanced renal prostaglandin release. J. Pharmacol. Exp. Ther. 324, 658-663. https://doi.org/10.1124/jpet.107.129197
  17. Park, M. K., Lee, H. J., Hong, S. H., Choi, S. S., Yoo, Y. H., Lee, K. I. and Kim, D. K. (2007) The increase in hepatic uncoupling by fenofibrate contributes to a decrease in adipose tissue in obese rats. J. Korean Med. Sci. 22, 235-241. https://doi.org/10.3346/jkms.2007.22.2.235
  18. Zawalich, W. and Zawalich, K. (1985) Effect of exogenous phospholipase A2 on insulin secretion from perifused rat islets. Diabetes 34, 471-476. https://doi.org/10.2337/diabetes.34.5.471
  19. Ramanadham, S., Ma, Z., Arita, H., Zhang, S. and Turk, J. (1998) Type IB secretory phospholipase A2 is contained in insulin secretory granules of pancreatic islet beta-cells and is co-secreted with insulin from glucose-stimulated islets. Biochim. Biophys. Acta. 1390, 301-312. https://doi.org/10.1016/S0005-2760(97)00189-6
  20. Fryirs, M., Barter, P. J. and Rye, K. A. (2009) Cholesterol metabolism and pancreatic beta-cell function. Curr. Opin. Lipidol. 20, 159-164. https://doi.org/10.1097/MOL.0b013e32832ac180
  21. Hofer-Warbinek, R., Schmid, J. A., Mayer, H., Winsauer, G., Orel, L., Mueller, B., Wiesner, C. H., Binder, B. R. and de Martin, R. A. (2004) Highly conserved proapoptotic gene, IKIP, located next to the APAF1 gene locus, is regulated by p53. Cell Death Differ. 11, 1317-1325. https://doi.org/10.1038/sj.cdd.4401502
  22. Ruan, H. and Pownall, H. J. (2009) The adipocyte IKK/NFkappaB pathway: a therapeutic target for insulin resistance. Curr. Opin. Investig. Drugs 10, 346-352.
  23. Lappas, M., Yee, K., Permezel, M. and Rice, G. E. (2005) Sulfasalazine and BAY 11-7082 interfere with the nuclear factor-kappa B and I kappa B kinase pathway to regulate the release of proinflammatory cytokines from human adipose tissue and skeletal muscle in vitro. Endocrinology 146, 1491-1497. https://doi.org/10.1210/en.2004-0809
  24. Karlberg, N., Jalanko, H., Kallijärvi, J., Lehesjoki, A. E. and Lipsanen-Nyman, M. (2005) Insulin resistance syndrome in subjects with mutated RING finger protein TRIM37. Diabetes 54, 3577-3581. https://doi.org/10.2337/diabetes.54.12.3577
  25. Yeung, K., Seitz, T., Li ,S., Janosch, P., McFerran, B., Kaiser, C., Fee, F., Katsanakis, K. D., Rose, D. W., Mischak, H., Sedivy, J. M. and Kolch, W. (1999) Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401, 173-177. https://doi.org/10.1038/43686
  26. Jager, J., Grémeaux, T., Gonzalez, T., Bonnafous, S., Debard, C., Laville, M., Vidal, H., Tran, A., Gual, P., Le Marchand-Brustel, Y., Cormont, M. and Tanti, J. F. (2010) Tpl2 kinase is up-regulated in adipose tissue in obesity and may mediate IL-1{beta} and TNF-{alpha} effects on ERK activation and lipolysis. Diabetes 59, 61-70. https://doi.org/10.2337/db09-0470
  27. Izawa, Y., Yoshizumi, M., Fujita, Y., Ali, N., Kanematsu, Y., Ishizawa, K., Tsuchiya, K., Obata, T., Ebina, Y., Tomita, S. and Tamaki, T. (2005) ERK1/2 activation by angiotensin II inhibits insulin-induced glucose uptake in vascular smooth muscle cells. Exp. Cell Res. 308, 291-299. https://doi.org/10.1016/j.yexcr.2005.04.028
  28. Zheng, Y., Zhang, W., Pendleton, E., Leng, S., Wu, J., Chen, R. and Sun, X. J. (2009) Improved insulin sensitivity by calorie restriction is associated with reduction of ERK and p70S6K activities in the liver of obese Zucker rats. J. Endocrinol. 203, 337-347. https://doi.org/10.1677/JOE-09-0181
  29. Kanda, T., Wakino, S., Homma, K., Yoshioka, K., Tatematsu, S., Hasegawa, K., Takamatsu, I., Sugano, N., Hayashi, K. and Saruta, T. (2006) Rho-kinase as a molecular target for insulin resistance and hypertension. FASEB J. 20, 169-171. https://doi.org/10.1096/fj.05-4197fje
  30. Baek, S. M., Ahn, J. S., Noh, H. S., Park, J., Kang, S. S. and Kim, D. R. (2010) Proteomic analysis in NSAIDs-treated primary cardiomyocytes. J. Proteomics 73, 721-732. https://doi.org/10.1016/j.jprot.2009.10.004
  31. Kim, D. R. (2001) Determination of monoclonal antibodies capable of recognizing the native protein using surface Plasmon resonance. J. Biochem. Mol. Biol. 34, 452-456.

Cited by

  1. Pathobiochemical Changes in Diabetic Skeletal Muscle as Revealed by Mass-Spectrometry-Based Proteomics vol.2012, 2012, https://doi.org/10.1155/2012/893876
  2. Depletion of p18/LAMTOR1 promotes cell survival via activation of p27kip1-dependent autophagy under starvation vol.39, pp.11, 2015, https://doi.org/10.1002/cbin.10497
  3. PEBP1, a RAF kinase inhibitory protein, negatively regulates starvation-induced autophagy by direct interaction with LC3 vol.12, pp.11, 2016, https://doi.org/10.1080/15548627.2016.1219013
  4. Ligand Binding Study of Human PEBP1/RKIP: Interaction with Nucleotides and Raf-1 Peptides Evidenced by NMR and Mass Spectrometry vol.7, pp.4, 2012, https://doi.org/10.1371/journal.pone.0036187
  5. Diversity of human skeletal muscle in health and disease: Contribution of proteomics vol.74, pp.6, 2011, https://doi.org/10.1016/j.jprot.2011.02.028