DOI QR코드

DOI QR Code

Genome wide identification of Staufen2-bound mRNAs in embryonic rat brains

  • Received : 2010.01.26
  • Accepted : 2010.03.16
  • Published : 2010.05.31

Abstract

Messenger ribonucleoprotein particles (mRNPs) are used to transport mRNAs along neuronal dendrites to their site of translation. Staufen2 is an mRNA-binding protein expressed in the cell bodies and cellular processes of different brain cells. It is notably involved in the transport of dendritic mRNAs along microtubules. Its knockdown expression was shown to change spine morphology and impair synaptic functions. However, the identity of Staufen2-bound mRNAs in brain cells is still completely unknown. As a mean to identify these mRNAs, we immunoprecipitated Staufen2-containing mRNPs from embryonic rat brains and used a genome wide approach to identify Staufen2-associated mRNAs. The genome wide approach identified 1780 mRNAs in Staufen2-containing mRNPs that code for proteins involved in cellular processes such as post-translational protein modifications, RNA metabolism, intracellular transport and translation. These results represent an additional and important step in the characterization of Staufen2- mediated neuronal functions in rat brains.

Keywords

References

  1. Bassell, G. J., Oleynikov, Y. and Singer, R. H. (1999) The travels of mRNAs through all cells large and small. Faseb. J. 13, 447-454. https://doi.org/10.1096/fasebj.13.3.447
  2. Sanchez-Carbente, M. and DesGroseillers, L. (2008) Understanding the importance of mRNA transport in memory. Prog. Brain Res. 169, 41-58. https://doi.org/10.1016/S0079-6123(07)00003-9
  3. Sossin, W. S. and DesGroseillers, L. (2006) Intracellular trafficking of RNA in neurons. Traffic 7, 1581-1589. https://doi.org/10.1111/j.1600-0854.2006.00500.x
  4. Duchaine, T. F., Hemraj, I., Furic, L., Deitinghoff, A., Kiebler, M. A. and DesGroseillers, L. (2002) Staufen2 isoforms localize to the somatodendritic domain of neurons and interact with different organelles. J. Cell Sci. 115, 3285-3295.
  5. Tang, S. J., Meulemans, D., Vazquez, L., Colaco, N. and Schuman, E. (2001) A role for a rat homolog of staufen in the transport of RNA to neuronal dendrites. Neuron 32, 463-475. https://doi.org/10.1016/S0896-6273(01)00493-7
  6. Thomas, M. G., Martinez Tosar, L. J., Loschi, M., Pasquini, J. M., Correale, J., Kindler, S. and Boccaccio, G. L. (2005) Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes. Mol. Biol. Cell 16, 405-420. https://doi.org/10.1091/mbc.E04-06-0516
  7. Monshausen, M., Gehring, N. H. and Kosik, K. S. (2004) The mammalian RNA-binding protein Staufen2 links nuclear and cytoplasmic RNA processing pathways in neurons. Neuromolecular Med. 6, 127-144. https://doi.org/10.1385/NMM:6:2-3:127
  8. Jeong, J. H., Nam, Y. J., Kim, S. Y., Kim, E. G., Jeong, J. and Kim, H. K. (2007) The transport of Staufen2- containing ribonucleoprotein complexes involves kinesin motor protein and is modulated by mitogen-activated protein kinase pathway. J. Neurochem. 102, 2073-2084. https://doi.org/10.1111/j.1471-4159.2007.04697.x
  9. Kim, K. C. and Kim, H. K. (2006) Role of Staufen in dendritic mRNA transport and its modulation. Neurosci. Lett. 397, 48-52. https://doi.org/10.1016/j.neulet.2005.11.047
  10. Goetze, B., Tuebing, F., Xie, Y., Dorostkar, M. M., Thomas, S., Pehl, U., Boehm, S., Macchi, P. and Kiebler, M. A. (2006) The brain-specific double-stranded RNA-binding protein Staufen2 is required for dendritic spine morphogenesis. J. Cell Biol. 172, 221-231. https://doi.org/10.1083/jcb.200509035
  11. Mallardo, M., Deitinghoff, A., Muller, J., Goetze, B., Macchi, P., Peters, C. and Kiebler, M. A. (2003) Isolation and characterization of Staufen-containing ribonucleoprotein particles from rat brain. Proc. Natl. Acad. Sci. U.S.A. 100, 2100-2105. https://doi.org/10.1073/pnas.0334355100
  12. Kiebler, M. A. and Bassell, G. J. (2006) Neuronal RNA granules: movers and makers. Neuron 51, 685-690. https://doi.org/10.1016/j.neuron.2006.08.021
  13. Khatua, S., Peterson, K. M., Brown, K. M., Lawlor, C., Santi, M. R., LaFleur, B., Dressman, D., Stephan, D. A. and MacDonald, T. J. (2003) Overexpression of the EGFR/FKBP12/HIF-2alpha pathway identified in childhood astrocytomas by angiogenesis gene profiling. Cancer Res. 63, 1865-1870.
  14. Blazejczyk, M., Miron, M. and Nadon, R. (2007) FlexArray: A statistical data analysis software for gene expression microarrays. Genome Quebec, Montreal, Canada, http://genomequebec.mcgill.ca/FlexArray
  15. Al-Shahrour, F., Minguez, P., Vaquerizas, J. M., Conde, L. and Dopazo, J. (2005) BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments. Nucleic Acids Res. 33, W460-464. https://doi.org/10.1093/nar/gki456
  16. Hieronymus, H. and Silver, P. A. (2004) A systems view of mRNP biology. Genes Dev. 18, 2845-2860. https://doi.org/10.1101/gad.1256904
  17. Moore, M. J. (2005) From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514-1518. https://doi.org/10.1126/science.1111443
  18. Keene, J. D. (2007) RNA regulons: coordination of posttranscriptional events. Nat. Rev. Genet. 8, 533-543. https://doi.org/10.1038/nrg2111
  19. Walsh, C. T., Garneau-Tsodikova, S. and Gatto, G. J., Jr. (2005) Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. Engl. 44, 7342-7372. https://doi.org/10.1002/anie.200501023
  20. Yang, X. J. (2005) Multisite protein modification and intramolecular signaling. Oncogene 24, 1653-1662. https://doi.org/10.1038/sj.onc.1208173
  21. Kim, Y. K., Furic, L., Desgroseillers, L. and Maquat, L. E. (2005) Mammalian Staufen1 recruits Upf1 to specific mRNA 3'UTRs so as to elicit mRNA decay. Cell 120, 195-208. https://doi.org/10.1016/j.cell.2004.11.050
  22. Dugre-Brisson, S., Elvira, G., Boulay, K., Chatel-Chaix, L., Mouland, A. J. and DesGroseillers, L. (2005) Interaction of Staufen1 with the 5' end of mRNA facilitates translation of these RNAs. Nucleic Acids Res. 33, 4797-4812. https://doi.org/10.1093/nar/gki794
  23. Kim-Ha, J., Kerr, K. and Macdonald, P. M. (1995) Translational regulation of oskar mRNA by bruno, an ovarian RNA-binding protein, is essential. Cell 81, 403-412. https://doi.org/10.1016/0092-8674(95)90393-3
  24. Micklem, D. R., Adams, J., Grunert, S. and St Johnston, D. (2000) Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation. EMBO J. 19, 1366-1377. https://doi.org/10.1093/emboj/19.6.1366
  25. Furic, L., Maher-Laporte, M. and DesGroseillers, L. (2008) A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes. RNA 14, 324-335. https://doi.org/10.1261/rna.720308
  26. Duchaine, T., Wang, H. J., Luo, M., Steinberg, S. V., Nabi, I. R. and DesGroseillers, L. (2000) A novel murine Staufen isoform modulates the RNA content of Staufen complexes. Mol. Cell Biol. 20, 5592-5601. https://doi.org/10.1128/MCB.20.15.5592-5601.2000
  27. Ryu, N. K., Yang, M. H., Jung, M. S., Jeon, J. O., Kim, K. W. and Park, J. H. (2007) Gene expression profiling of rewarding effect in methamphetamine treated Bax-deficient mouse. J. Biochem. Mol. Biol. 40, 475-485. https://doi.org/10.5483/BMBRep.2007.40.4.475
  28. Yang, M. H., Yoo, K. H., Yook, Y. J., Park, E. Y., Jeon, J. O., Choi, S. H., Park, S. Y., Woo, Y. M., Lee, M. J. and Park, J. H. (2007) The gene expression profiling in murine cortical cells undergoing programmed cell death (PCD) induced by serum deprivation. J. Biochem. Mol. Biol. 40, 277-285. https://doi.org/10.5483/BMBRep.2007.40.2.277

Cited by

  1. Selenoprotein W expression and regulation in mouse brain and neurons vol.3, pp.5, 2013, https://doi.org/10.1002/brb3.159
  2. RNA- binding protein Stau2 is important for spindle integrity and meiosis progression in mouse oocytes vol.15, pp.19, 2016, https://doi.org/10.1080/15384101.2016.1208869
  3. Of social molecules: The interactive assembly ofASH1mRNA-transport complexes in yeast vol.11, pp.8, 2014, https://doi.org/10.4161/rna.29946
  4. The multifunctional Staufen proteins: conserved roles from neurogenesis to synaptic plasticity vol.37, pp.9, 2014, https://doi.org/10.1016/j.tins.2014.05.009
  5. The M-phase specific hyperphosphorylation of Staufen2 involved the cyclin-dependent kinase CDK1 vol.18, pp.1, 2017, https://doi.org/10.1186/s12860-017-0142-z
  6. An Asymmetrically Localized Staufen2-Dependent RNA Complex Regulates Maintenance of Mammalian Neural Stem Cells vol.11, pp.4, 2012, https://doi.org/10.1016/j.stem.2012.06.010
  7. Molecular Composition of Staufen2-Containing Ribonucleoproteins in Embryonic Rat Brain vol.5, pp.6, 2010, https://doi.org/10.1371/journal.pone.0011350
  8. Independent localization of MAP2, CaMKIIα and β-actin RNAs in low copy numbers vol.12, pp.10, 2011, https://doi.org/10.1038/embor.2011.149
  9. Molecular determinants of the axonal mRNA transcriptome vol.74, pp.3, 2014, https://doi.org/10.1002/dneu.22123
  10. Asymmetric Segregation of the Double-Stranded RNA Binding Protein Staufen2 during Mammalian Neural Stem Cell Divisions Promotes Lineage Progression vol.11, pp.4, 2012, https://doi.org/10.1016/j.stem.2012.06.006
  11. Mechanisms of dendritic mRNA transport and its role in synaptic tagging vol.30, pp.17, 2011, https://doi.org/10.1038/emboj.2011.278
  12. Staufen1 senses overall transcript secondary structure to regulate translation vol.21, pp.1, 2013, https://doi.org/10.1038/nsmb.2739
  13. Unraveling the Pathways to Neuronal Homeostasis and Disease: Mechanistic Insights into the Role of RNA-Binding Proteins and Associated Factors vol.19, pp.8, 2018, https://doi.org/10.3390/ijms19082280