DOI QR코드

DOI QR Code

Analysis of the solution structure of the human antibiotic peptide dermcidin and its interaction with phospholipid vesicles

  • Jung, Hyun-Ho (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Yang, Sung-Tae (Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health) ;
  • Sim, Ji-Yeong (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Lee, Seung-Kyu (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Lee, Ju-Yeon (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Kim, Ha-Hyung (College of Pharmacy, Chung-Ang University) ;
  • Shin, Song-Yub (Department of Bio-Materials, Graduate School and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University) ;
  • Kim, Jae-Il (Department of Life Science, Gwangju Institute of Science and Technology)
  • Received : 2010.04.08
  • Accepted : 2010.04.15
  • Published : 2010.05.31

Abstract

Dermcidin is a human antibiotic peptide that is secreted by the sweat glands and has no homology to other known antimicrobial peptides. As an initial step toward understanding dermcidin's mode of action at bacterial membranes, we used homonuclear and heteronuclear NMR to determine the conformation of the peptide in 50% trifluoroethanol solution. We found that dermcidin adopts a flexible amphipathic $\alpha$-helical structure with a helix-hinge-helix motif, which is a common molecular fold among antimicrobial peptides. Spin-down assays of dermcidin and several related peptides revealed that the affinity with which dermcidin binds to bacterial-mimetic membranes is primarily dependent on its amphipathic $\alpha$-helical structure and its length (>30 residues); its negative net charge and acidic pI have little effect on binding. These findings suggest that the mode of action of dermcidin is similar to that of other membrane-targeting antimicrobial peptides, though the details of its antimicrobial action remain to be determined.

Keywords

References

  1. Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415, 389-395. https://doi.org/10.1038/415389a
  2. Selsted, M. E. and Ouellette, A. J. (2005) Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 6, 551-557. https://doi.org/10.1038/ni1206
  3. Ganz, T. and Lehrer, R. I. (1998) Antimicrobial peptides of vertebrates. Curr. Opin. Immunol. 10, 41-44. https://doi.org/10.1016/S0952-7915(98)80029-0
  4. Finlay, B. B. and Hancock, R. E. (2004) Can innate immunity be enhanced to treat microbial infections? Nat. Rev. Microbiol. 2, 497-504. https://doi.org/10.1038/nrmicro908
  5. Epand, R. M. and Vogel, H. J. (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta. 1462, 11-28. https://doi.org/10.1016/S0005-2736(99)00198-4
  6. Bulet, P., Stocklin, R. and Menin, L. (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev. 198, 169-184. https://doi.org/10.1111/j.0105-2896.2004.0124.x
  7. Tossi, A., Sandri, L. and Giangaspero, A. (2000) Amphipathic, alpha-helical antimicrobial peptides. Biopolymers. 55, 4-30. https://doi.org/10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M
  8. Hancock, R. E. and Scott, M. G. (2000) The role of antimicrobial peptides in animal defenses. Proc. Natl. Acad. Sci. U.S.A. 97, 8856-8861. https://doi.org/10.1073/pnas.97.16.8856
  9. Huang, H. W. (2000) Action of antimicrobial peptides: two-state model. Biochemistry. 39, 8347-8352. https://doi.org/10.1021/bi000946l
  10. Yang, L., Harroun, T. A., Weiss, T. M., Ding, L. and Huang, H. W. (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 81, 1475-1485. https://doi.org/10.1016/S0006-3495(01)75802-X
  11. Matsuzaki, K., Sugishita, K., Ishibe, N., Ueha, M., Nakata, S., Miyajima, K. and Epand, R. M. (1998) Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry. 37, 11856-11863. https://doi.org/10.1021/bi980539y
  12. Christensen, B., Fink, J., Merrifield, R. B. and Mauzerall, D. (1988) Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Natl. Acad. Sci. U.S.A. 85, 5072-5076. https://doi.org/10.1073/pnas.85.14.5072
  13. Shai, Y. and Oren, Z. (2001) From "carpet" mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides. 22, 1629-1641. https://doi.org/10.1016/S0196-9781(01)00498-3
  14. Ladokhin, A. S. and White, S. H. (2001) 'Detergent-like' permeabilization of anionic lipid vesicles by melittin. Biochim. Biophys. Acta. 1514, 253-260. https://doi.org/10.1016/S0005-2736(01)00382-0
  15. Schittek, B., Hipfel, R., Sauer, B., Bauer, J., Kalbacher, H., Stevanovic, S., Schirle, M., Schroeder, K., Blin, N., Meier, F., Rassner, G. and Garbe, C. (2001) Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat. Immunol. 2, 1133-1137. https://doi.org/10.1038/ni732
  16. Flad, T., Bogumil, R., Tolson, J., Schittek, B., Garbe, C., Deeg, M., Mueller, C. A. and Kalbacher, H. (2002) Detection of dermcidin-derived peptides in sweat by Protein-Chip technology. J. Immunol. Methods. 270, 53-62. https://doi.org/10.1016/S0022-1759(02)00229-6
  17. Lai, Y. P., Peng, Y. F., Zuo, Y., Li, J., Huang, J., Wang, L. F. and Wu, Z. R. (2005) Functional and structural characterization of recombinant dermcidin-1L, a human antimicrobial peptide. Biochem. Biophys. Res. Commun. 328, 243-250. https://doi.org/10.1016/j.bbrc.2004.12.143
  18. Steffen, H., Rieg, S., Wiedemann, I., Kalbacher, H., Deeg, M., Sahl, H. G., Peschel, A., Gotz, F., Garbe, C. and Schittek, B. (2006) Naturally processed dermcidin-derived peptides do not permeabilize bacterial membranes and kill microorganisms irrespective of their charge. Antimicrob. Agents. Chemother. 50, 2608-2620. https://doi.org/10.1128/AAC.00181-06
  19. Matsuzaki, K. (1998) Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim. Biophys. Acta. 1376, 391-400. https://doi.org/10.1016/S0304-4157(98)00014-8
  20. Simmaco, M., Mignogna, G. and Barra, D. (1998) Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers. 47, 435-450. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<435::AID-BIP3>3.0.CO;2-8
  21. Gazit, E., Lee, W. J., Brey, P. T. and Shai, Y. (1994) Mode of action of the antibacterial cecropin B2: a spectrofluorometric study. Biochemistry. 33, 10681-10692. https://doi.org/10.1021/bi00201a016
  22. Oren, Z. and Shai, Y. (1998) Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers. 47, 451-463. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F
  23. Holak, T. A., Engstrom, A., Kraulis, P. J., Lindeberg, G., Bennich, H., Jones, T. A., Gronenborn, A. M. and Clore, G. M. (1988) The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry. 27, 7620-7629. https://doi.org/10.1021/bi00420a008
  24. Katsu, T., Kuroko, M., Morikawa, T., Sanchika, K., Yamanaka, H., Shinoda, S. and Fujita, Y. (1990) Interaction of wasp venom mastoparan with biomembranes. Biochim. Biophys. Acta. 1027, 185-190. https://doi.org/10.1016/0005-2736(90)90083-Z
  25. Oh, D., Shin, S. Y., Lee, S., Kang, J. H., Kim, S. D., Ryu, P. D., Hahm, K. S. and Kim, Y. (2000) Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1-8)-magainin 2(1-12) and its analogues, on their antibiotic activities and structures. Biochemistry. 39, 11855-11864. https://doi.org/10.1021/bi000453g
  26. Park, S. H., Kim, Y. K., Park, J. W., Lee, B. and Lee, B. J. (2000) Solution structure of the antimicrobial peptide gaegurin 4 by $^1H$ and $^{15}N$ nuclear magnetic resonance spectroscopy. Eur. J. Biochem. 267, 2695-2704. https://doi.org/10.1046/j.1432-1327.2000.01287.x
  27. Tack, B. F., Sawai, M. V., Kearney, W. R., Robertson, A. D., Sherman, M. A., Wang, W., Hong, T., Boo, L. M., Wu, H., Waring, A. J. and Lehrer, R. I. (2002) SMAP-29 has two LPS-binding sites and a central hinge. Eur. J. Biochem. 269, 1181-1189. https://doi.org/10.1046/j.0014-2956.2002.02751.x
  28. Cipakova, I., Gasperik, J. and Hostinova, E. (2006) Expression and purification of human antimicrobial peptide, dermcidin, in Escherichia coli. Protein. Expr. Purif. 45, 269-274. https://doi.org/10.1016/j.pep.2005.07.002
  29. Guntert, P. (2004) Automated NMR structure calculation with CYANA. Methods. Mol. Biol. 278, 353-378.
  30. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. and Warren, G. L. (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta. Crystallogr. D. Biol. Crystallogr. 54, 905-921. https://doi.org/10.1107/S0907444998003254

Cited by

  1. The Multiple Facets of Dermcidin in Cell Survival and Host Defense vol.4, pp.4, 2012, https://doi.org/10.1159/000336844
  2. Antimicrobial Peptides Share a Common Interaction Driven by Membrane Line Tension Reduction vol.111, pp.10, 2016, https://doi.org/10.1016/j.bpj.2016.10.003
  3. Identification of an antimicrobial peptide from human methionine sulfoxide reductase B3 vol.44, pp.10, 2011, https://doi.org/10.5483/BMBRep.2011.44.10.669
  4. Human Antimicrobial Peptides and Proteins vol.7, pp.5, 2014, https://doi.org/10.3390/ph7050545
  5. Structure-Activity Analysis of the Dermcidin-derived Peptide DCD-1L, an Anionic Antimicrobial Peptide Present in Human Sweat vol.287, pp.11, 2012, https://doi.org/10.1074/jbc.M111.332270
  6. The secrets of dermcidin action vol.305, pp.2, 2015, https://doi.org/10.1016/j.ijmm.2014.12.012
  7. Effects of the phosphatidylglycerol head group on the binding of short dermcidin-derived peptides to the phospholipid membrane surface vol.53, pp.9, 2012, https://doi.org/10.1016/j.tetlet.2011.12.071
  8. Dermcidin, an anionic antimicrobial peptide: influence of lipid charge, pH and Zn2+on its interaction with a biomimetic membrane vol.10, pp.4, 2014, https://doi.org/10.1039/C3SM52400K