DOI QR코드

DOI QR Code

Effect of Obesity and Diabetes on Alzheimer's APP Gene Expression in Mouse Adipose Tissues

비만 및 당뇨가 생쥐 지방조직에서의 Alzheimer's APP 유전자 발현에 미치는 영향

  • Kim, Jin-Woo (Department of Biomedical Science, Catholic University of Daegu) ;
  • Lee, Yong-Ho (Department of Biomedical Science, Catholic University of Daegu)
  • 김진우 (대구가톨릭대학교 의생명과학과) ;
  • 이용호 (대구가톨릭대학교 의생명과학과)
  • Received : 2010.05.06
  • Accepted : 2010.05.24
  • Published : 2010.07.30

Abstract

The aim of this study was to determine whether Alzheimer's amyloid precursor protein (APP) is dysregulated in adipose tissues of C57BL/6 male mice by high-fat diet (HFD) induced obesity, aging, or streptozotocin (STZ)-induced diabetes. APP mRNA expression was examined by quantitative real-time PCR (QPCR) in subcutaneous (SAT) and epididymal adipose tissues (EAT) from mice in 8 different condition groups. By combining conditions of age (16 weeks/26 weeks of age), diet (normal diet (ND)/high-fat diet), and induction of diabetes (non-diabetic/diabetic), 88 mice were divided into 8 different groups. QPCR demonstrated that APP expression in SAT was significantly increased by about two-fold in HFD-induced obese mice compared to both 16 week-old and 26 week-old mice in the ND group (16 weeks p=0.001; 26 weeks p<0.0001), but no changes in EAT was found. Particular effects of aging on APP gene expression were not observed in either adipose tissue depots. Significantly decreased APP expression was found in SAT in STZ-induced diabetic mice fed on ND or HFD at 16 weeks of age (ND p<0.05; HFD p<0.01). Linear regression analysis demonstrated that APP expression levels correlated with body weight in both the non-diabetic group (R=0.657, p<0.0001, n=39) and the diabetic group (R=0.508, p=<0.0001, n=49), but did not correlate with plasma glucose levels, which suggests that decreased APP expression in STZ-induced diabetic mice is most likely due to weight loss rather than hyperglycemia. These data confirm APP dysregulation by weight changes in humans and suggest a possible role linking midlife obesity with the later development of amyloidogenesis in the brain of older patients with Alzheimer's disease.

본 연구에서, 고지방식이에 의한 비만, streptozotocin처리에 의한 당뇨 및 노화에 의해 알츠하이머병의 원인 유전자인 APP의 발현이상이 생기는지를 조사하였다. 일반식이(ND)/고지방식이(HFD), 16주령/26주령, 및 정상/당뇨 등의 조건별 8가지 조합에 88마리의 C57BL/6 생쥐를 각 그룹에 최소 10마리씩 나누어 키웠으며, 각 실험생쥐로부터 추출한 부고피하지방 및 부고환지방조직에서의 APP mRNA 발현양을 quantitative real-time PCR로 측정하였다. 그 결과, 피하지방조직에서의 APP 유전자는 16주령과 26주령에서 고지방식이로 키워 비만을 유도한 동물에서 2배정도 높게 발현되었으나(16주령 $125.0{\pm}13.9$ vs. $63.5{\pm}9.9$, p=0.001; 26주령 $120.2{\pm}6.0$ vs. $51.8{\pm}6.3$, p<0.0001), 부고환지방조직에서는 APP 발현양의 차이가 나타나지 않았다. 16주령과 26주령 사이에서의 노화에 따른 APP 발현양의 차이도 나타나지 않았다. 또한, 일반 및 고지방식이로 키운 16주령 생쥐의 피하지방조직 APP 유전자 발현은 STZ에 의해 유도된 당뇨병 생쥐에서 크게 감소되었다(ND non-diabetic $63.5{\pm}9.9$ vs. diabetic $40.2{\pm}5.0$, p<0.05; HFD $125.0{\pm}13.9$ vs. $67.0{\pm}9.0$, p<0.01). APP mRNA 발현양의 선형회귀분석에 의하면, 당뇨병이 유발되지 않은 일반 생쥐(R=0.657, p<0.0001, n=39)와 당뇨병 생쥐(R=0.508, p=<0.0001, n=49) 모두에서의 APP mRNA 발현양이 체중과 깊은 연관성이 있음이 확인되었으나, APP mRNA 양과 혈당과의 연관성은 나타나지 않았다. 이는 STZ에 의한 당뇨병 생쥐에서 관찰된 APP mRNA 발현의 감소는 고혈당증에 의한 것이 아닌 체중감소의 영향인 것으로 추측된다. 본 연구의 결과로 APP mRNA는 생쥐의 피하지방 및 부고환지방에서 발현되고 있고, 비만에의 의해 증가하며, 체중감소에 의해 감소한다는 것을 확인하였다. 이들 결과는 사람에게서 확인된 체중변화에 의한 APP 이상발현 현상을 더욱 분명히 보여주었으며, 이런 APP 이상발현이 중년기 비만과 노령기의 알츠하이머병 환자 뇌에서의 amyloidogenesis 증가 매개자로서의 역할 가능성을 시사한다.

Keywords

References

  1. Balakrishnan, K., G. Verdile, P. D. Mehta, J. Beilby, D. Nolan, D. A. Galvao, R. Newton, S. E. Gandy, and R. N. Martins. 2005. Plasma Abeta42 correlates positively with increased body fat in healthy individuals. J. Alzheimers Dis. 8, 269-282.
  2. Butterfield, D. A., S. Griffin, G. Munch, and G. M. Pasinetti. 2002. Amyloid beta-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which Alzheimer's disease brain exists. J. Alzheimers Dis. 4, 193-201.
  3. Combs, C. K., D. E. Johnson, J. C. Karlo, S. B. Cannady, and G. E. Landreth. 2000. Inflammatory mechanisms in Alzheimer's disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J. Neurosci. 20, 558-567.
  4. Craft, S. 2007. Insulin resistance and Alzheimer's disease pathogenesis: potential mechanisms and implications for treatment. Curr. Alzheimer Res. 4, 147-152. https://doi.org/10.2174/156720507780362137
  5. Craft, S., E. Peskind, M. W. Schwartz, G. D. Schellenberg, M. Raskind, and D. Jr. Porte. 1998. Cerebrospinal fluid and plasma insulin levels in Alzheimer's disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology 50, 164-168. https://doi.org/10.1212/WNL.50.1.164
  6. Desai, A. K. and G. T. Grossberg. 2005. Diagnosis and treatment of Alzheimer's disease. Neurology 64, S34-S39. https://doi.org/10.1212/WNL.64.12_suppl_3.S34
  7. Galloway, S., L. Jian, R. Johnsen, S. Chew, and J. C. Mamo. 2007. beta-amyloid or its precursor protein is found in epithelial cells of the small intestine and is stimulated by high-fat feeding. J. Nutr. Biochem. 18, 279-284. https://doi.org/10.1016/j.jnutbio.2006.07.003
  8. Gandy, S. 2005. The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease. J. Clin. Invest. 115, 1121-1129.
  9. Gorospe, E. C. and J. K. Dave. 2007. The risk of dementia with increased body mass index. Age Ageing 36, 23-29. https://doi.org/10.1093/ageing/afl123
  10. Gustafson, D., E. Rothenberg, K. Blennow, B. Steen, and I. Skoog. 2003. An 18-year follow-up of overweight and risk of Alzheimer disease. Arch. Intern. Med. 163, 1524-1528. https://doi.org/10.1001/archinte.163.13.1524
  11. Hardy, J. and D. J. Selkoe. 2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353-356. https://doi.org/10.1126/science.1072994
  12. Kivipelto, M., T. Ngandu, L. Fratiglioni, M. Viitanen, I. Kareholt, B. Winblad, E. L. Helkala, J. Tuomilehto, H. Soininen, and A. Nissinen. 2005. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch. Neurol. 62, 1556-1560. https://doi.org/10.1001/archneur.62.10.1556
  13. Kuusisto, J., K. Koivisto, L. Mykkanen, E. L. Helkala, M. Vanhanen, T. Hanninen, K. Kervinen, Y. A. Kesaniemi, P. J. Riekkinen, and M. Laakso. 1997. Association between features of the insulin resistance syndrome and Alzheimer's disease independently of apolipoprotein E4 phenotype: cross sectional population based study. BMJ 315, 1045-1049. https://doi.org/10.1136/bmj.315.7115.1045
  14. Lee, Y. H., J. M. Martin, R. L. Maple, W. G. Tharp, and R. E. Pratley. 2009. Plasma amyloid-beta peptide levels correlate with adipocyte amyloid precursor protein gene expression in obese individuals. Neuroendocrinology 90, 383-390. https://doi.org/10.1159/000235555
  15. Lee, Y. H., S. Nair, E. Rousseau, D. B. Allison, G. P. Page, P. A. Tataranni, C. Bogardus, and P. A. Permana. 2005. Microarray profiling of isolated abdominal subcutaneous adipocytes from obese vs non-obese Pima Indians: increased expression of inflammation-related genes. Diabetologia 48, 1776-1783. https://doi.org/10.1007/s00125-005-1867-3
  16. Lee, Y. H., W. G. Tharp, R. L. Maple, S. Nair, P. A. Permana, and R. E. Pratley. 2008. Amyloid precursor protein expression is upregulated in adipocytes in obesity. Obesity 16, 1493-1500. https://doi.org/10.1038/oby.2008.267
  17. Lee, Y. H., W. G. Tharp, M. Peshavaria, S. Nair, P. A. Permana, and R. E. Pratley. 2006. Overexpression of amyloid precursor protein (APP) in adipose tissue of obese individuals. Obesity, 13, A214.
  18. Lee, Y. H., S. Tokraks, R. E. Pratley, C. Bogardus, and P. A. Permana. 2003. Identification of differentially expressed genes in skeletal muscle of non-diabetic insulin-resistant and insulin-sensitive Pima Indians by differential display PCR. Diabetologia 46, 1567-1575. https://doi.org/10.1007/s00125-003-1226-1
  19. Lovett, M., D. Goldgaber, P. Ashley, D. R. Cox, D. C. Gajdusek, and C. J. Epstein. 1987. The mouse homolog of the human amyloid beta protein (AD-AP) gene is located on the distal end of mouse chromosome 16: further extension of the homology between human chromosome 21 and mouse chromosome 16. Biochem. Biophys. Res. Commun. 144, 1069-1075.
  20. Luchsinger, J. A. and R. Mayeux. 2007. Adiposity and Alzheimer's disease. Curr. Alzheimer Res. 4, 127-134. https://doi.org/10.2174/156720507780362100
  21. Luchsinger, J. A., M. X. Tang, S. Shea, and R. Mayeux. 2004. Hyperinsulinemia and risk of Alzheimer disease. Neurology 63, 1187-1192. https://doi.org/10.1212/01.WNL.0000140292.04932.87
  22. Lue, L. F., R. Rydel, E. F. Brigham, L. B. Yang, H. Hampel, G. M., Jr. Murphy, L. Brachova, S. D. Yan, D. G. Walker, Y. Shen, and J. Rogers. 2001. Inflammatory repertoire of Alzheimer's disease and nondemented elderly microglia in vitro. Glia 35, 72-79. https://doi.org/10.1002/glia.1072
  23. Nair, S., Y. H. Lee, E. Rousseau, M. Cam, P. A. Tataranni, L. J. Baier, C. Bogardus, and P. A. Permana. 2005. Increased expression of inflammation-related genes in cultured preadipocytes/stromal vascular cells from obese compared with non-obese Pima Indians. Diabetologia 48, 1784-1788. https://doi.org/10.1007/s00125-005-1868-2
  24. Palmert, M. R., T. E. Golde, M. L. Cohen, D. M. Kovacs, R. E. Tanzi, J. F. Gusella, M. F. Usiak, L. H. Younkin, and S. G. Younkin. 1988. Amyloid protein precursor messenger RNAs: differential expression in Alzheimer's disease. Science 241, 1080-1084. https://doi.org/10.1126/science.2457949
  25. Peila, R., B. L. Rodriguez, L. R. White, and L. J. Launer. 2004. Fasting insulin and incident dementia in an elderly population of Japanese-American men. Neurology 63, 228-233. https://doi.org/10.1212/01.WNL.0000129989.28404.9B
  26. Razay, G., A. Vreugdenhil, and G. Wilcock. 2006. Obesity, abdominal obesity and Alzheimer disease. Dement. Geriatr. Cogn. Disord. 22, 173-176. https://doi.org/10.1159/000094586
  27. Rosengren, A., I. Skoog, D. Gustafson, and L. Wilhelmsen. 2005. Body mass index, other cardiovascular risk factors, and hospitalization for dementia. Arch. Intern. Med. 165, 321-326. https://doi.org/10.1001/archinte.165.3.321
  28. Selkoe, D. J., M. B. Podlisny, C. L. Joachim, E. A. Vickers, G. Lee, L. C. Fritz, and T. Oltersdorf. 1988. Beta-amyloid precursor protein of Alzheimer disease occurs as 110- to 135-kilodalton membrane-associated proteins in neural and nonneural tissues. Proc. Natl. Acad. Sci. USA 85, 7341-7345. https://doi.org/10.1073/pnas.85.19.7341
  29. Small, G. W., P. V. Rabins, P. P. Barry, N. S. Buckholtz, S. T. DeKosky, S. H. Ferris, S. I. Finkel, L. P. Gwyther, Z. S .Khachaturian, B. D. Lebowitz, T. D. McRae, J. C. Morris, F. Oakley, L. S. Schneider, J. E. Streim, T. Sunderland, L. A. Teri, and L. E. Tune. 1997. Diagnosis and treatment of Alzheimer disease and related disorders. Consensus statement of the American Association for Geriatric Psychiatry, the Alzheimer's Association, and the American Geriatrics Society. Jama 278, 1363-1371. https://doi.org/10.1001/jama.278.16.1363
  30. White, J. A., A. M. Manelli, K. H. Holmberg, L. J. Van Eldik, and M. J. Ladu. 2005. Differential effects of oligomeric and fibrillar amyloid-beta 1-42 on astrocyte-mediated inflammation. Neurobiol Dis. 18, 459-465. https://doi.org/10.1016/j.nbd.2004.12.013
  31. Whitmer, R. A., E. P. Gunderson, E. Barrett-Connor, C. P., Jr. Quesenberry, and K. Yaffe. 2005. Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. BMJ 330, 1360. https://doi.org/10.1136/bmj.38446.466238.E0
  32. Yamada, T., H. Sasaki, K. Dohura, I. Goto, and Y. Sakaki. 1989. Structure and expression of the alternatively-spliced forms of mRNA for the mouse homolog of Alzheimer's disease amyloid beta protein precursor. Biochem. Biophys. Res. Commun. 158, 906-912. https://doi.org/10.1016/0006-291X(89)92808-8
  33. Yamada, T., H. Sasaki, H. Furuya, T. Miyata, I. Goto, and Y. Sakaki. 1987. Complementary DNA for the mouse homolog of the human amyloid beta protein precursor. Biochem. Biophys. Res. Commun. 149, 665-671. https://doi.org/10.1016/0006-291X(87)90419-0
  34. Zheng, H. and E. H. Koo. 2006. The amyloid precursor protein: beyond amyloid. Mol. Neurodegener. 1, 5. https://doi.org/10.1186/1750-1326-1-5