DOI QR코드

DOI QR Code

Size-of-source Effect and Self-radiation Effect of an Infrared Radiation Thermometer

적외선 복사온도계의 복사원 크기효과 및 자기복사효과

  • 유용심 (한국표준과학연구원 기반표준본부) ;
  • 김봉학 (한국표준과학연구원 기반표준본부) ;
  • 박철웅 (한국표준과학연구원 기반표준본부) ;
  • 박승남 (한국표준과학연구원 기반표준본부)
  • Received : 2010.04.27
  • Accepted : 2010.06.23
  • Published : 2010.08.25

Abstract

All radiation thermometers have a size-of-source effect (SSE) and a self-radiation effect (SRE). The SSE,defined as dependence of the detector signal of a radiation thermometer on the diameter of a source, is critically dependent on the wavelength since diffraction is the main cause. In this paper, we have measured the SSE and the SRE of TRT2 (Transfer Radiation Thermometer 2, HEITRONICS) widely used as a transfer standard in low and middle temperature range. At $300^{\circ}C$, The radiation temperature difference between the 60 mm diameter blackbody and 10 mm diameter blackbody due to the SSE was estimated to be $3.5^{\circ}C$ in low temperature mode ($8-14\;{\mu}m$) and $0.5^{\circ}C$ in middle temperature mode ($3.9\;{\mu}m$). In addition, the measured radiation temperature difference of the blackbody due to the SRE was found to be 110 mK when the body temperature change of TRT2 was set at $2.6^{\circ}C$.

모든 복사온도계는 복사원 크기효과(Size-of-Source Effect, SSE)와 자기복사효과를 가지고 있다. 복사원의 직경에 따른 복사온도계의 검출기 신호세기로 정의된 SSE의 주원인은 회절이기 때문에 파장에 크게 좌우된다. 본 논문에서는 중저온영역에서 복사온도의 전달표준기로 많이 사용되고 있는 TRT2(Transfer Radiation Thermometer 2, HEITRONICS)의 SSE와 자기복사 특성을 측정하였다. 측정한 TRT2의 SSE 값을 사용하여 계산한 결과 흑체의 온도가 $300^{\circ}C$ 일 때, 개구 직경이 60 mm인 흑체와 10 mm인 흑체의 복사온도 차이가 저온모드($8-14\;{\mu}m$)에서 $3.5^{\circ}C$, 중온모드($3.9\;{\mu}m$)에서 $0.5^{\circ}C$인 것을 알 수 있었다. 또한, 복사온도계 몸체 온도가 $2.6^{\circ}C$ 변화했을 때 자기복사효과 때문에 흑체의 복사온도는 110 mK 다르게 측정되었다.

Keywords

References

  1. J. P. Rice and B. C. Johnson, “The NIST EOS thermalinfrared transfer radiometer,” Metrologia 35, 505-509 (1998). https://doi.org/10.1088/0026-1394/35/4/51
  2. F. Girard and T. Ricolfi, “Simple approach for temperature compensation in a transfer standard radiation thermometer,” in Proc. TEMPMEKO (Berlin, Germany, Jun. 2001), vol. 2, pp. 807-810.
  3. O. Struband and C. Staniewicz, “Transfer radiation thermometer covering the temperature range of -50$${^{\circ}c}$$ to 1000$${^{\circ}c}$$,” in Proc. TEMPMEKO (Berlin, Germany, Jun. 2001), vol. 2, pp. 811-816.
  4. H. W. Yoon, D. W. Allen, and R. D. Saunders, “Methods to reduce the size-of-source effect in radiometers,” Metrologia 42, 89-96 (2005). https://doi.org/10.1088/0026-1394/42/2/003
  5. B. Gutschwager, J. Hollandt, T Jankowski, and R. Gartner, “A vacuum infrared standard radiation thermometer at the PTB,” Int. J. Thermophys 29, 330-340 (2008). https://doi.org/10.1007/s10765-007-0349-x
  6. P. Blombergen, “On the uncertainty in the correction for the size-of-source effect,” Metrologia 46, 544-553 (2009). https://doi.org/10.1088/0026-1394/46/5/019
  7. P. Blombergen, “Analytical representations of the size-of-source effect,” Metrologia 46, 534-543 (2009). https://doi.org/10.1088/0026-1394/46/5/018
  8. P. Bloembergen, “On the correction for the size-of-source effect corrupted by background radiation,” in Proc. TEMPMEKO (Delft, Netherlands, Jun. 1999), vol. 2, pp. 607-612.
  9. G. Machin and M. Ibrahim, “A size of source effect and temperature uncertainty: II Low temperature systems,” in Proc. TEMPMEKO (Delft, Netherlands, Jun. 1999), vol. 2, pp. 687-692.
  10. I. Pusnik, G. Grgic, and J. Drnovsek, “System for the determination of the size-of-source effect of radiation thermometers with the direct reading of temperature,” Meas. Sci. Technol. 17, 1330-1336 (2006). https://doi.org/10.1088/0957-0233/17/6/007
  11. Y. S. Yoo, B.-H. Kim, C.-W. Park, D.-H. Lee, and S.-N. Park, “Size of source effect of a transfer reference thermometer suitable for the artefact of international comparisons near the room temperature,” in Proc. IMEKO (Lisbon, Portugal, 2009), pp. 1493-1496.
  12. P. Saunders and H. Edgar, “On the characterization and correction of the size-of-source effect in radiation thermometers,” Metrologia 46, 62-74 (2009). https://doi.org/10.1088/0026-1394/46/1/008
  13. J. B. Fowler, “A third generation water bath based blackbody source,” J. Res. Natl. Stand. Technol. 100, 591-599 (1995). https://doi.org/10.6028/jres.100.044

Cited by

  1. Realization of a radiation temperature scale from 0 °C to 232 °C by a thermal infrared thermometer based on a multiple-fixed-point technique vol.50, pp.4, 2013, https://doi.org/10.1088/0026-1394/50/4/409
  2. Construction and Characterization of a Large Aperture Blackbody for Infrared Radiometer Calibration vol.32, pp.7-8, 2011, https://doi.org/10.1007/s10765-011-0962-6