DOI QR코드

DOI QR Code

Optical Current Sensors Based on Polarization Rotated Reflection Interferometry

편광회전 반사간섭계를 이용한 광전류센서

  • Jang, Ji-Hyang (School of Electrical Engineering, Pusan National University) ;
  • Chu, Woo-Sung (School of Electrical Engineering, Pusan National University) ;
  • Kim, Hoon (School of Electrical Engineering, Pusan National University) ;
  • Seo, Jun-Kyu (School of Electrical Engineering, Pusan National University) ;
  • Kim, Kyung-Jo (School of Electrical Engineering, Pusan National University) ;
  • Kim, Jun-Whee (School of Electrical Engineering, Pusan National University) ;
  • Oh, Min-Cheol (School of Electrical Engineering, Pusan National University)
  • Received : 2010.05.03
  • Accepted : 2010.07.22
  • Published : 2010.08.25

Abstract

Fiber optic current sensors based on polarization-rotated reflection interferometry are demonstrated by incorporating them into polymeric optical waveguide components, including polarization-maintaining 3-dB couplers, TE-pass waveguide polarizers, and thermooptic phase modulators. To remove the bending induced birefringence, optical fiber coil is annealed at $850^{\circ}C$ for 24 hours. The reflection interferometry comprising polymer waveguide devices exhibit a highly stable output signal corresponding to the flowing current.

폴리머 광도파로를 기반으로 제작된 편광유지 3-dB 방향성 광분배기, 편광기, 위상 변조기 등의 광부품들을 이용하여 편광 회전 반사 간섭계형 광섬유 전류 센서를 제작하였다. 광섬유 전류센서를 위해 필요한 상기 광부품들을 개별적으로 설계 및 제작하여 특성을 확인하였으며, 전류 측정을 위해 사용되는 광섬유 센서 코일에서 발생되는 스트레인에 의한 복굴절을 제거하기 위하여 $850^{\circ}C$의 온도에서 24시간 동안 열처리를 실시하였다. 완성된 반사 간섭계형 광섬유 전류 센서를 이용하여 전선에 흐르는 전류의 크기를 측정하는 실험을 수행하였으며 전류의 양에 비례하는 안정적인 응답 특성을 확인하였다.

Keywords

References

  1. A. M. Smith, “Polarization and megnetooptic properties of single-mode optical fiber,” Appl. Opt. 17, 52-56 (1978). https://doi.org/10.1364/AO.17.000052
  2. A. Papp and H. Harms, “Magnetooptic current transformer. 1: principles,” Appl. Opt. 19, 3729-3734 (1980). https://doi.org/10.1364/AO.19.003729
  3. K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” IEEE J. Lightwave Technol. 20, 267-276 (2002). https://doi.org/10.1109/50.983241
  4. Klaus Bohnert and Oberrohrdorf, “Fiber-optic current sensor,” U.S. Patent 7,075,286 B2 (2006).
  5. J. D. P. Hrabliuk, “Optical current sensors eliminate CT saturation,” in Proc. 2002 IEEE PES Winter Meeting (New York, USA, Jan. 2002), pp. 1478-1481.
  6. M. Hino, S. Hase, K. Ajiki, and M. Akagi, “Optical fiber current transformer applications on railway electric power supply systems,” QR of RTRI 45, 59-63 (2004). https://doi.org/10.2219/rtriqr.45.59
  7. K. Bohnert, P. Gabus, J. Nehring, H. Brandle, and M. G. Brunzel, “Fiber-optic current sensor for electrowinning of metals,” IEEE J. Lightwave Technol. 25, 3602-3609 (2007). https://doi.org/10.1109/JLT.2007.906795
  8. K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, “Optical fiber sensors for the electric power industry,” Optics and Lasers in Engineering 43, 511-526 (2005). https://doi.org/10.1016/j.optlaseng.2004.02.008
  9. H. A. Schafft, “Thermal analysis of electromigration test structure,” IEEE Trans. Electron Dev. ED-34, 664-672 (1987).
  10. A. H. Rose, S. M. Etzel, and C. M. Wang, “Verdet constant dispersion in annealed optical fiber current sensors,” IEEE J. Lightwave Technol. 15, 803-807 (1997). https://doi.org/10.1109/50.580818