DOI QR코드

DOI QR Code

박막형 에탈론 기반의 투과형 컬러필터

Color Filter Utilizing a Thin Film Etalon

  • Yoon, Yeo-Taek (Department of Electronic Engineering, Kwangwoon University) ;
  • Lee, Sang-Shin (Department of Electronic Engineering, Kwangwoon University)
  • 투고 : 2010.05.25
  • 심사 : 2010.06.14
  • 발행 : 2010.08.25

초록

본 논문에서는 은-산화막-은 구조의 박막형 에탈론 기반의 투과형 컬러필터를 제안하고 구현하였다. 제안된 박막형 소자는 전자빔 리소그래피 방식에 비해 넓은 유효면적을 갖고 적외선 대역에서의 차단 특성이 우수하다. 또한 금속의 분산특성 및 두께 그리고 기판의 영향 등을 고려하기 위하여 FDTD 방법을 도입함으로써 제안된 소자를 설계 및 분석하였다. 설계된 청색, 녹색, 적색 필터 소자의 산화막 캐비티 두께는 각각 100, 130, 160 nm였으며, 은 박막의 두께는 25 nm였다. 얻어진 측정결과를 살펴보면, 중심파장은 각각 480, 555, 650 nm, 대역폭은 각각 약 120, 100, 120 nm였으며 투과율은 약 60%였다. 그리고 빔의 입사각에 대한 상대적인 투과율 변화율은 ~1%/degree 였다.

A transmission type color filter based on a thin film Ag-$SiO_2$-Ag etalon was proposed and realized in a quartz substrate. The device could acquire infrared suppressed transmission and wide effective area compared to costly e-beam lithography and laser interference lithography. The FDTD method was introduced to take into account the effect of the dispersion characteristics of the silver metal and the thickness thereof. Three different color filters were devised: The cavity length for the red, green and blue filters were 160 nm, 130 nm, and 100 nm respectively, with the metal layer unchanged at 25 nm. The observed center wavelengths were measured at 650 nm, 555 nm, and 480 nm for the red, green, and blue devices; the corresponding bandwidths were about 120 nm, 100 nm, and 120 nm; and the peak transmission for all was ~60%. Finally the relative transmission was measured to decline with the angle of the incident beam with the rate of 1%/degree.

키워드

참고문헌

  1. F. J. Ko and H. P. D. Shieh, “High-efficiency micro-optical color filter for liquid-crystal projection system applications,” Appl. Opt. 39, 1159-1163 (2000). https://doi.org/10.1364/AO.39.001159
  2. Y. Cho, Y. K. Choi, and S. H. Sohn, “Optical properties of neodymium-containing polymethy lmethacrylate films for the organic light emitting diode color filter,” Appl. Phys. Lett. 89, 051102-1-051102-3 (2006). https://doi.org/10.1063/1.2244042
  3. P. B. Catrysse, W. Suh, S. Fan, and M. Peeters, “One-mode model for patterned metal layers inside integrated color pixels,” Opt. Lett. 29, 974-976 (2004). https://doi.org/10.1364/OL.29.000974
  4. Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett. 18, 2126-2128 (2006). https://doi.org/10.1109/LPT.2006.883208
  5. H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Exp. 15, 15457-15463 (2007). https://doi.org/10.1364/OE.15.015457
  6. Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park, and K. D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Exp. 16, 2374-2380 (2008). https://doi.org/10.1364/OE.16.002374
  7. Q. H. Wang, D. H. Li, B. J. Peng, Y. H. Tao, and W. X. Zhao, “Multilayer dielectric color filters for optically written display using up-conversion of near infrared light,” IEEE J. Display Technol. 4, 250-253 (2008). https://doi.org/10.1109/JDT.2007.911864
  8. L. I. Berezhinsky, D. Y. Park, C. M. Sung, K. H. Kwon, and S. H. Chai, “Filter for TV and video cameras,” Semicond. Phys. Quantum Electron. Optoelectron. 8, 106-109 (2005).
  9. Y. Inaba, M. Kasano, K. Tanaka, and T. Yamaguchi, “Degradation-free MOS image sensor with photonic crystal color filter,” IEEE Elect. Dev. Lett. 27, 457-459 (2006). https://doi.org/10.1109/LED.2006.874126
  10. S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photoniccrystal-based RGB-and-IR,” IEEE Trans. Elect. Dev. 55, 754-759 (2008). https://doi.org/10.1109/TED.2007.914828
  11. R. A. Booth and D. K. Reinhard, “Diamond thin film Fabry Perot optical etalons,” in Proc. the 6th Applied Diamond Conference/Second Frontier Carbon Technology Joint Conference (Auburn University Hotel and Conference Center, USA, Aug. 2001), pp. 180-185.
  12. E. D. Palik, Handbook of Optical Constants of Solids III (Academic Press, San Diego, USA, 1998), pp. 519-536.
  13. H. A. Macleod, Thin-film Optical Filters III (Taylor & Francis, New York, USA, 2001), pp. 325-347.
  14. G. Minas, J. C. Ribeiro, J. S. Martins, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot optical-channels for biological fluids analysis,” Sens. Actuators A 115, 362-367 (2004). https://doi.org/10.1016/j.sna.2004.03.077