DOI QR코드

DOI QR Code

주요 식용버섯 추출물의 생리활성 효과

Physiological Activities of Extract from Edible Mushrooms

  • 최세진 (한림대학교 식품영양학과) ;
  • 이연실 (한림대학교 식의약품 효능평가 및 기능성 소재개발 센터) ;
  • 김진경 (한림대학교 식의약품 효능평가 및 기능성 소재개발 센터) ;
  • 김진규 (한림대학교 천연의약연구소) ;
  • 임순성 (한림대학교 식품영양학과)
  • Choi, Se-Jin (Dept. of Food Science and Nutrition, Hallym University) ;
  • Lee, Yeon-Sil (Center for Efficacy Assessment and Development of Functional Food and Drugs, Hallym University) ;
  • Kim, Jin-Kyung (Center for Efficacy Assessment and Development of Functional Food and Drugs, Hallym University) ;
  • Kim, Jin-Kyu (Institute of Natural Medicine, Hallym University) ;
  • Lim, Soon-Sung (Dept. of Food Science and Nutrition, Hallym University)
  • 투고 : 2010.01.29
  • 심사 : 2010.07.22
  • 발행 : 2010.08.31

초록

본 연구는 예로부터 식용 및 약용으로 널리 이용되어지는 버섯의 기능성 소재로서의 타당성을 검증하기 위하여 버섯 추출물의 유효성분 함량(polyphenol, $\beta$-glucan)과 저분자 및 고분자 분획물의 항산화 활성, 혈전용해 활성, 면역증강 및 항염증 활성 등을 측정하였다. 그 결과 전체 수율은 식용버섯이 약용버섯보다 높게 나타났으며, $\beta$-glucan의 함량은 표고버섯(33.5%)이 가장 높게 나타났다. Polyphenol 함량은 약용버섯인 상황버섯(LMW)이 233.23 mg/g로 가장 높게 나타났으며, 애느타리버섯(LMW) 12.18 mg/g, 송이버섯(LMW) 11.72 mg/g 순으로 확인되었다. 버섯 추출물의 항산화 능력을 측정하기 위한 전자공여능 측정 결과는 ascorbic acid 0.5 mg/mL에서 95.91%의 저해율을 나타낸 것에 비하여 상황버섯(LMW, 10 mg/mL)이 80.74%의 억제활성을 나타내었다. SOD 유사활성 측정에서는 대부분의 버섯 추출물에서 큰 차이를 나타내지 않았으며, 아질산염 소거능 측정에서는 pH의 감소에 따라 소거능이 증가하였고, 상황버섯(LMW)이 가장 높은 소거능을 나타내었다. 이처럼 버섯 추출물의 항산화능력 측정에서 phenol성 물질을 많이 함유하고 약용버섯으로 사용되는 상황버섯이 식용버섯(송이버섯, 새송이버섯, 양송이버섯, 느타리버섯, 애느타리버섯, 표고버섯, 팽이버섯) 보다 LMW 분획에서 우수한 항산화 능력을 갖는 것을 알 수 있었다. 그러나 혈전용해 활성을 측정한 결과에서 대부분의 LMW 분획물들은 혈전용해 활성을 갖지 않았으며, 송이 버섯(HMW, 50 mg/mL)이 60.4%의 가장 높은 혈전용해 활성을 나타내었다. 또한 RAW 264.7 cell을 이용한 대식세포 활성능(NO 생성)을 측정한 결과 LMW 분획에서는 대식세포 활성능력이 거의 없는 것으로 조사되었으며, 대조군인 LPS 500 ng/mL를 첨가한 상태에서 $32.9\;{\mu}M$의 NO를 생성하는 것과 비교하여, 표고버섯(HMW, $500\;{\mu}g/mL$) $39.86\;{\mu}M$, 송이버섯 $35.17\;{\mu}M$의 NO 생성능을 나타내었다. 또한 약용버섯인 상황버섯(HMW)은 NO 생성능력이 거의 나타나지 않았다. 반면에 RAW 264.7 cell로부터 LPS에 의해 유도된 NO 생성 저해활성을 측정한 결과 상황버섯(LMW) $500\;{\mu}g/mL$의 농도에서 NO의 생성을 100% 저해하였고, 새송이버섯(LMW)은 $50\;{\mu}g/mL$에서 58.14%, $500\;{\mu}g/mL$에서 67.79%의 저해활성을 나타내었다. 이상의 결과로부터 phenol 성분을 다량 함유하고 있는 상황버섯(LMW)은 일반적인 식용버섯에 비해 항산화능이 우수함을 알 수 있었으며, 혈전용해능력(송이버섯, I)과 면역증강(표고버섯, VII) 그리고 항염증(새송이버섯, II)에서는 식용버섯의 HMW 분획물이 우수한 활성을 나타내는 것을 확인하였다.

This study was conducted to investigate the physiological activity of extracts of fresh mushrooms. The components were extracted by hot water; subsequently, the hot-water extract was subjected to 60% ethanol precipitation to yield high-molecular-weight (HMW) and low-molecular-weight (LMW) fractions. Total polyphenol contents, $\beta$-glucan contents, electron-donating ability (EDA), superoxide dismutase (SOD)-like activity, nitrite-scavenging activity, fibrinolytic activity, nitric oxide (NO) production, and inhibition of NO production of the mushroom extracts were measured using lipopolysaccharide (LPS)-stimulated murine macrophages, RAW 264.7 cells. The extracts of Lentinus edodes (Berk.) Singer and Pleurotus ostreatus (Fr.) Kummer contained the highest levels of $\beta$-glucan (33.5% and 25.57%, respectively). Further, the LMW fractions of the Phellinus linteus contained the highest levels of polyphenols (233.23 mg/g). The EDA of LMW fractions (10 mg/mL) of the Phellinus linteus and Agaricus bisporus were 80.74% and 51.35%, respectively. Further, SOD-like activities of the LMW fractions were high as compared to those of the HMW fractions. Nitrite-scavenging activities of the LMW fractions (pH 1.2; concentration, 10 mg/mL) of the Phellinus linteus and Pleurotus ostreatus (Fr.) Kummer were 75.95% and 41.05%, respectively. The fibrinolytic activity of the LMW fractions of all mushrooms showed no enzyme activity by fibrin plate assay. The fibrinolytic activity of the extracts of Tricholoma matsutake was the greatest inhibitory activity at 60.4%. Further study revealed that the mushroom extracts exhibited anti-inflammatory effects on RAW 264.7 cells. The LMW fraction ($500\;{\mu}g/mL$) of the Phellinus linteus considerably inhibited NO production (100%).

키워드

참고문헌

  1. Bano Z, Rajarathnam S. 1988. Pleurotus mushrooms. Part II. Chemical composition, nutritional value, post-harvest physiology, preservation, and role as human food. Crit Rev Food Sci Nutr 27: 87-158. https://doi.org/10.1080/10408398809527480
  2. Park SY, Kim JW. 1992. Screening and isolation of the antitumor agents from medicinal plants (I). Korean J Pharmacogn 23: 264-267.
  3. Yoon KY, Lee SH, Shin SR. 2005. Antioxidant and antimicrobial activities of extracts from Sarcodon aspratus. J Korean Soc Food Sci Nutr 34: 942-947. https://doi.org/10.3746/jkfn.2005.34.7.942
  4. Block G, Langseth L. 1994. Antioxidant vitamins and disease prevention. Food Technol 48: 80-84.
  5. Fukuzawa K, Takaishi Y. 1990. Antioxidants. J Act Oxy Free Rad 1: 55-70.
  6. Duh PD, Tu YY, Yen GC. 1999. Antioxidant activity of water extract of Harng Jyur (Chrysanthemum morifolium Ramat). Lebensm Wiss Technol 32: 269-277. https://doi.org/10.1006/fstl.1999.0548
  7. Osborn-Barnes HT, Akoh CC. 2003. Effect of $\alpha$-tocopherol, $\beta$-carotene, and isoflavones on lipid oxidation of structured lipid-based emulsions. J Agric Food Chem 51: 6856-6860. https://doi.org/10.1021/jf026212s
  8. Yen GC, Hsieh CL. 1998. Antioxidant activity of extracts from Du-zhong (Eucommia ulmoides) toward various lipid peroxidation models in vitro. J Agric Food Chem 46: 3431-3436. https://doi.org/10.1021/jf9707041
  9. Nakajima A, Ishida T, Koga M, Takeuchi M. 2002. Effect of hot water extract from Agaricus blazei Murill on antibody-producing cells in mice. Int Immunopharmacol 2: 1205-1211. https://doi.org/10.1016/S1567-5769(02)00056-5
  10. Hui LC, Guei RC, Chin CC, Jeng LM. 2001. Non-volatile taste components of Agaricus blazei, Antrodia camphorata and Cordycps millitaris mycelia. Food Chem 74: 203-207. https://doi.org/10.1016/S0308-8146(01)00127-3
  11. Mizuno M, Morimoto M, Minato K, Tsuchida H. 1998. Polysaccharides from Agaricus blazei stimulate lymphocyte T-cell subsets in mice. Biosci Biotechnol Biochem 62: 434-437. https://doi.org/10.1271/bbb.62.434
  12. Kubo M, Tatsuda H, Nogami M, Arichi S, Takahashi T. 1983. Studies on the Ganoderma lucidum (IV), effects on the disseminated intravascular coagulation. Yakugaku Zasshi 103: 871-877. https://doi.org/10.1248/yakushi1947.103.8_871
  13. Kabir Y, Kimura S. 1989. Dietary mushrooms reduce blood pressure in spontaneously hypertensive rats (SHR). J Nutr Sci Vitamino 35: 91-94. https://doi.org/10.3177/jnsv.35.91
  14. Folin O, Ciocalteu V. 1927. On tyrosine and tryptophane determination in proteins. J Biol Chem 27: 627-650.
  15. Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16: 144-158.
  16. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  17. Kim SM, Cho YS, Sung SK. 2001. The antioxidant ability and nitrite scavenging ability of plant extracts. Korean J Food Sci Technol 33: 626-632.
  18. Gray JI, Dugan Jr LR. 1975. Inhibition of N-nitrosamine formation in model food system. J Food Sci 40: 981-984. https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  19. Astrup A, Müllertz S. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch Biochem Biophys 40: 346-351. https://doi.org/10.1016/0003-9861(52)90121-5
  20. Fallarero A, Peltoketo A, Loikkanen J, Tammela P, Vidal A, Vuorela P. 2006. Effects of the aqueous extracts of Bryothamnion triquetrum on chemical hypoxia and aglycemia-induced demage in GT1-7 mouse hypothalmia imortalized cells. Phytodicine 13: 240-245.
  21. Ballance GM, Manners DJ. 1978. Structural analysis and enzymic solubilization of barley endosperm cell walls. Carbohydr Res 61: 107-113. https://doi.org/10.1016/S0008-6215(00)84471-7
  22. Jung EB, Jo JH, Cho SM. 2008. Nutritional component and anticancer properties of various extracts from Haesongi mushroom (Hypsizigus marmoreus). J Korean Soc Food Sci Nutr 37: 1395-1400. https://doi.org/10.3746/jkfn.2008.37.11.1395
  23. Hong JH, Youn KS, Choi YH. 2004. Characteristics of crude protein-bound polysaccharide from Agaricus blasei Murill by extraction and precipitation conditions and its antitumor effect. Korean J Food Sci Technol 36: 586-593.
  24. An Bj, Bae MJ, Choi HJ, Zhang YB, Sung TS, Choi C. 2002. Natural products, organic chemistry: isolation of polyphenol compounds from the leaves of Korean persimmon (Diospyrus kaki L. Folium). J Korean Soc Agric Chem Biotechnol 45: 212-217.
  25. Ahmad N, Gupta S, Mukhtar H. 2000. Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor ${\kappa}B$ in cancer cells versus normal cells. Arch Biochem Biophys 376: 338-346. https://doi.org/10.1006/abbi.2000.1742
  26. Kim JO, Jung MJ, Choi HJ, Lee JT, Lim AK, Hong JH, Kim DI. 2008. Antioxidative and biological activity of hot water and ethanol extracts from Phellinus linteus. J Korean Soc Food Sci Nutr 37: 684-690. https://doi.org/10.3746/jkfn.2008.37.6.684
  27. Cheung LM, Cheung CK, Vincent ECO. 2003. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem 81: 249-255. https://doi.org/10.1016/S0308-8146(02)00419-3
  28. Kitani K, Minami C, Amamoto T, Kanai S, Ivy GO, Carrillo MC. 2002. Pharmacological interventions in aging and age-associated disorders: potentials of propargylamines for human use. Ann NY Acad Sci 959: 295-307. https://doi.org/10.1111/j.1749-6632.2002.tb02101.x
  29. Lim TS, Do JR, Kwon OJ, Kim HK. 2007. Physiological activities of Agaricus bisporus extracts as affected by solvents. J Korean Soc Food Sci Nutr 36: 383-388. https://doi.org/10.3746/jkfn.2007.36.4.383
  30. Yun YP, Kang WS, Lee MY. 1996. The antithrombotic effects of green tea catechins. J Food Hyg Safe 11: 77-82.
  31. Kim JH, Yoo KH, Seok SJ. 2007. Screening test of wild mushroom methanol extracts for fibrinolytic and $\alpha$-glucosidase inhibitory activity. J Exp Biomed Sci 13: 245-249.
  32. Stamlar JS, Singel DJ, Loscalzo J. 1992. Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898-1902. https://doi.org/10.1126/science.1281928
  33. Lowenstein CJ, Synder SH. 1992. Nitirc oxide, novel biological messenger. Cell 70: 705-707. https://doi.org/10.1016/0092-8674(92)90301-R
  34. Kim MS, Cho HB. 2007. Immune enhancing effects of intracellular and extracellular polysaccharides extracted from mycelial cultivate of Agaricus blazei Murill. The Korean J Microbiol 43: 292-297.
  35. Galla HJ. 1993. Nitric oxide, NO, an intrercellular messenger. Angew Chem Int Ed Engl 32: 378-380. https://doi.org/10.1002/anie.199303781
  36. Lorsbach RB, Murphy WJ, Lowenstein CJ, Snyder SH, Russel SW. 1993. Expression of the nitric oxide synthase gene in mouse macrophage activated for tumor cell killing. J Biol Chem 268: 1908-1913.
  37. Balkwill F, Mantovani A. 2001. Inflammation and cancer:back to Virchow? Lancet 357: 537-545. https://doi.org/10.1016/S0140-6736(05)71691-3
  38. Yang KS, Jang HJ, Kim AK, Pyo MY. 2007. Inhibitors of nitric oxide syntheasis from Phellinus pini in murine macrophages. Yakhak Hoeji 51: 430-434.

피인용 문헌

  1. Antioxidant and Anticancer Effects of Edible and Medicinal Mushrooms vol.42, pp.5, 2013, https://doi.org/10.3746/jkfn.2013.42.5.655
  2. Fibrinolytic, thrombin inhibitory, anti-oxidative and anti-inflammatory activities of Pleurotus ferulea vol.13, pp.1, 2015, https://doi.org/10.14480/JM.2015.13.1.30
  3. Quality Characteristics of Yanggaeng Supplemented with Sanghwang Mushroom (Phellinus linteus) Mycelia vol.19, pp.3, 2013, https://doi.org/10.14373/JKDA.2013.19.3.253
  4. Hypoglycemic effects of submerged culture of Ceriporia lacerata mycelium vol.22, pp.1, 2015, https://doi.org/10.11002/kjfp.2015.22.1.145
  5. Spent Mushroom Substrate Influences Elk (Cervus Elaphus Canadensis) Hematological and Serum Biochemical Parameters vol.25, pp.3, 2012, https://doi.org/10.5713/ajas.2011.11329
  6. Biological Activities of Wild Sparassis crispa Extracts vol.43, pp.1, 2015, https://doi.org/10.4489/KJM.2015.43.1.40
  7. Antioxidant capacities and β-glucan content of ethanol extract from Phellinus baumii vol.22, pp.5, 2015, https://doi.org/10.11002/kjfp.2015.22.5.721
  8. Effects of Extrusion and Enzyme Treatment on Extraction of β-Glucan from Agaricus blazei Murill vol.45, pp.3, 2016, https://doi.org/10.3746/jkfn.2016.45.3.380
  9. Comparison of Antioxidant Activities of Pileus and Stipe from White Beech Mushrooms (Hypsizygus marmoreus) vol.26, pp.8, 2016, https://doi.org/10.5352/JLS.2016.26.8.928
  10. Protective effect of Korean diet food groups on lymphocyte DNA damage and contribution of each food group to total dietary antioxidant capacity (TDAC) vol.49, pp.5, 2016, https://doi.org/10.4163/jnh.2016.49.5.277
  11. Effect of Flammulina velutipes Extracts Cultivated with Oriental Herbal Plants on the Activation of Immune Cells vol.22, pp.6, 2012, https://doi.org/10.5352/JLS.2012.22.6.828
  12. Hazardous Heavy Metal Contents of Mushrooms from Retail Markets in Seoul vol.46, pp.3, 2014, https://doi.org/10.9721/KJFST.2014.46.3.283
  13. Quality Characteristics and Antioxidant Activities of Yanggaeng added with Pleurotus eryngii Powder vol.27, pp.1, 2017, https://doi.org/10.17495/easdl.2017.2.27.1.69
  14. A Study on Anti-oxidative Activity of the Lithospermum Erythrorhizon Extracts for Application as a Cosmetic Ingredient vol.26, pp.3, 2013, https://doi.org/10.7732/kjpr.2013.26.3.403
  15. Antioxidant Properties and Ubiquinone Contents in Different Parts of Several Commercial Mushrooms vol.41, pp.9, 2012, https://doi.org/10.3746/jkfn.2012.41.9.1235
  16. Comparative analysis of useful β-glucan and polyphenol in the fruiting bodies of Ganoderma spp. vol.11, pp.3, 2013, https://doi.org/10.14480/JM.2013.11.3.164
  17. Chemical Components, Antioxidant Activity, and α-Glucoamylase Inhibitory Activity of a New Mushroom Variety 'Dahyang' vol.40, pp.8, 2011, https://doi.org/10.3746/jkfn.2011.40.8.1179
  18. Effect of Sparassis crispa Extracts on Immune Cell Activation and Tumor Growth Inhibition vol.23, pp.8, 2013, https://doi.org/10.5352/JLS.2013.23.8.984
  19. Development of Species-Specific Primer to Determine the Authenticity of Vegetable Raw Materials in Food vol.18, pp.4, 2014, https://doi.org/10.13050/foodengprog.2014.18.4.419
  20. Comparative analysis of nitrite scavenging activity and anti-inflammation effects in the fruiting bodies of medicinal mushrooms vol.13, pp.4, 2015, https://doi.org/10.14480/JM.2015.13.4.330
  21. Bioactive compounds and antioxidant activities of sprout soybean fermented with Irpex lacteus mycelia vol.26, pp.6, 2017, https://doi.org/10.1007/s10068-017-0231-y
  22. 시판 막걸리의 이화학적 특성과 젖산균 함량 및 생리기능성 vol.40, pp.4, 2010, https://doi.org/10.4014/kjmb.1207.07006
  23. 약용버섯과 식용버섯의 건조방법에 따른 품질특성 vol.23, pp.5, 2010, https://doi.org/10.11002/kjfp.2016.23.5.689
  24. 상황버섯과 영지버섯 차류 제품의 이화학적 특성 및 항산화능 vol.24, pp.1, 2010, https://doi.org/10.11002/kjfp.2017.24.1.153
  25. 싸리버섯 추출물의 구강세균에 대한 항균활성 vol.17, pp.3, 2010, https://doi.org/10.13065/jksdh.2017.17.03.493
  26. 표고버섯가루 분말 첨가 식빵의 일반성분 및 품질 특성 vol.30, pp.6, 2010, https://doi.org/10.9799/ksfan.2017.30.6.1319
  27. 추출용매에 따른 영지버섯(Ganoderma lucidum)의 항산화 및 소화효소 저해활성 vol.25, pp.1, 2010, https://doi.org/10.11002/kjfp.2018.25.1.124
  28. 새송이버섯 추출물이 구강세균에 작용하는 항균효과 vol.18, pp.1, 2010, https://doi.org/10.13065/jksdh.2018.18.01.9
  29. Improvement in β-glucan extraction from Ganoderma lucidum with high-pressure steaming and enzymatic pre-treatment vol.61, pp.2, 2018, https://doi.org/10.1007/s13765-018-0350-z
  30. 능이버섯과 미강 혼합 추출물의 β-Glucan 함량 및 항산화 활성 vol.33, pp.3, 2010, https://doi.org/10.13103/jfhs.2018.33.3.200
  31. 한국산 및 중국산 비자 열매의 항산화 활성과 유효성분 비교 vol.50, pp.3, 2018, https://doi.org/10.9721/kjfst.2018.50.3.274
  32. 새송이버섯, 팽이버섯 열수추출물의 항산화 및 항암 활성 vol.31, pp.6, 2018, https://doi.org/10.9799/ksfan.2018.31.6.911
  33. Phellinus linteus KACC 93057P, '한경상황버섯'인공재배 자실체 페놀추출물의 항산화 활성 및 화학적 동정 vol.16, pp.4, 2018, https://doi.org/10.14480/jm.2018.16.4.311
  34. 액체종균으로 배양된 느타리버섯(Pleurotus ostreatus)의 이화학적 특성 및 항산화 활성 vol.17, pp.1, 2010, https://doi.org/10.14480/jm.2019.17.1.24
  35. 한국 및 중국산 목이 및 흰목이의 추출용매에 따른 생리활성 성분 비교 vol.17, pp.2, 2010, https://doi.org/10.14480/jm.2019.17.2.78
  36. 국내 야생버섯의 항산화 활성 및 베타글루칸 함량 분석 vol.17, pp.3, 2019, https://doi.org/10.14480/jm.2019.17.3.144
  37. 꽃송이버섯 발효물의 항산화 활성 및 폴리페놀 함량 변화 vol.17, pp.4, 2010, https://doi.org/10.14480/jm.2019.17.4.268
  38. Evaluation of the Physiological Activity of Lentinula edodes Extract by Extrusion vol.30, pp.1, 2020, https://doi.org/10.17495/easdl.2020.2.30.1.35
  39. 건조 방법에 따른 느타리버섯과 새송이버섯 열수추출물의 항산화 활성 vol.33, pp.1, 2010, https://doi.org/10.9799/ksfan.2020.33.1.064
  40. Quality Characteristics and Antioxidant Activities of Yanggaeng Added with Lentinus edodes Powder vol.30, pp.2, 2010, https://doi.org/10.17495/easdl.2020.4.30.2.162
  41. 영지 균주별 생육특성, 생리활성, 영양성분 및 당 성분 함량 비교 vol.18, pp.3, 2010, https://doi.org/10.14480/jm.2020.18.3.221
  42. SSR 마커를 이용한 유럽 양송이 자원의 유전적 다양성 및 집단구조분석 vol.18, pp.4, 2010, https://doi.org/10.14480/jm.2020.18.4.323
  43. 버섯차 개발을 위한 로스팅 식용버섯류와 곡물첨가물의 혼합비율에 따른 추출온도 및 시간별 생리활성 및 영양성분 변화 vol.18, pp.4, 2010, https://doi.org/10.14480/jm.2020.18.4.344
  44. 팽이, 잎새버섯, 꽃송이버섯 가공방법별 생리활성 및 영양성분 변화 vol.18, pp.4, 2010, https://doi.org/10.14480/jm.2020.18.4.403
  45. 향심 주정추출물의 난소적출 랫드에서 항골다공증 효과 vol.51, pp.4, 2010, https://doi.org/10.22889/kjp.2020.51.4.332
  46. 풀버섯 균주별 항산화 활성, 베타글루칸 및 영양성분 함량 분석 vol.19, pp.1, 2021, https://doi.org/10.14480/jm.2021.19.1.56
  47. Inhibition of nitric oxide and lipid accumulation by Sargassum sp. seaweeds and their antioxidant properties vol.28, pp.2, 2021, https://doi.org/10.11002/kjfp.2021.28.2.288
  48. Cytotoxicity, metabolic enzyme inhibitory, and anti‐inflammatory effect of Lentinula edodes fermented using probiotic lactobacteria vol.45, pp.8, 2010, https://doi.org/10.1111/jfbc.13838