DOI QR코드

DOI QR Code

반응표면분석을 이용한 송이버섯 열수추출조건의 최적화

Optimization of Hot Water Extraction Conditions for Tricholoma matsutake by Response Surface Methodology

  • 강복희 (경북대학교 사범대학 가정교육과) ;
  • 이진만 (호서대학교 식품생물공학과) ;
  • 김유경 (경북대학교 사범대학 가정교육과)
  • Kang, Bok-Hee (Dept. of Home Economics Education, Kyungpook National University) ;
  • Lee, Jin-Man (Dept. of Food & Biotechnology, Hoseo University) ;
  • Kim, Yoo-Kyeong (Dept. of Home Economics Education, Kyungpook National University)
  • 투고 : 2010.04.15
  • 심사 : 2010.05.18
  • 발행 : 2010.08.31

초록

송이버섯의 최적 추출조건 예측을 위해 추출온도(60, 70, 80, 90, $100^{\circ}C$), 추출시간(1, 2, 3, 4, 5 hr) 및 시료에 대한 용매비(10, 20, 30, 40, 50 mL/g)를 독립변수로 하여 중심합성계획에 따라 16구간의 열수추출조건을 설정하였다. 각 추출물에 대한 이화학적 특성으로 가용성 고형분 함량, 총 페놀성 화합물 함량, 전자공여능, 아질산염 소거능 및 환원당함량을 조사하였다. 각 특성에 대하여 SAS program을 이용하여 회귀분석 후 최적 추출조건의 예측과 반응표면에 의한 추출특성을 모니터링하였다. 가용성 고형분 함량, 전자공여능 및 아질산염 소거능은 시료에 대한 용매비에 영향을 많이 받고 있는 것으로 나타났으며, 총 페놀성 화합물 및 환원당함량은 추출온도 및 시료에 대한 용매비의 영향을 모두 많이 받고 있는 것으로 나타났다. 송이버섯의 효율적인 추출을 위하여 열수에서 추출특성을 분석한 결과 가용성 고형분 함량의 최적 추출조건은 추출온도 $83.48^{\circ}C$, 추출시간 3.44 hr 및 시료에 대한 용매비는 42.83 mL/g이었으며, 총 페놀성 화합물 함량에 대한 최적추출조건은 추출온도 $78.85^{\circ}C$, 추출시간 3.33 hr 및 시료에 대한 용매비는 34.84 mL/g이었다. 전자공여능에 대한 최적조건은 추출온도 $91.00^{\circ}C$, 추출시간 1.62 hr 및 시료에 대한 용매비는 39.42 mL/g 등으로 각각 나타났다. 각 변수에 대한 회귀식을 도출하여 송이버섯의 이 화학적 특성에 대한 최적추출조건을 중첩(superimposing) 한 결과 추출조건의 범위는 추출온도 $70{\sim}90^{\circ}C$, 추출시간 2~4 hr, 시료에 대한 용매비 30~50 mL/g으로 각각 예측되었다.

This study was performed to establish optimum extraction condition of Tricholoma matsutake. A central composite design was applied to investigate the effects of independent variables, extraction temperature ($X_1$), extraction time ($X_2$) and water per sample ($X_3$) on dependent variables such as soluble solids contents ($Y_1$), total phenolics contents ($Y_2$), reducing sugar contents ($Y_3$), electron donating ability ($Y_4$) and nitrite scavenging ability ($Y_5$). The optimum extraction conditions were predicted and monitored by response surface methodology using SAS program based regression analysis. Soluble solids content, electron donating ability and nitrite scavenging ability were highly affected by water per sample. However, the contents of total phenolics and reducing sugar were affected by water per sample and extraction temperature as well. The optimum extraction conditions for soluble solids were 34.84 mL/g (water/sample) at $78.85^{\circ}C$, for 3.33 hr. In contrast, the optimum extraction conditions of electron donating ability were temperature of $91.00^{\circ}C$, time of 1.62 hr and water per sample of 39.42 mL/g. Taken together, the optimum ranges for hot water extraction of Tricholoma matsutake were $70{\sim}90^{\circ}C$, 2~4 hr and 30~50 mL/g.

키워드

참고문헌

  1. Lee YS. 1996. Promotion Policy for Mushroom Industry. A report from the Korea Rural Economic Institute. p 34-36.
  2. Jung MC. 1998. Development of freshness prolongation technology for export pine mushroom. A report from the Ministry of Agriculture and Forestry by Korea Food Research Institute.
  3. Ahn JS, Lee KH. 1986. A study on the mineral contents in edible mushrooms produced in Korea. Korean J Food Hyg 1: 177-179.
  4. Hur YH, Kim OK. 1991. Studies on the mineral content of edible mushrooms. Korean J Env Hlth Soc 17: 129-135.
  5. Ku KH, Cho MH, Park WS. 2002. Characteristics of quality and volatile flavor compounds in raw and frozen pinemushroom (Tricholoma matsutake). Korean J Food Sci Technol 34: 625-630.
  6. Cho IH, Lee SM, Kim SY, Choi HK, Kim KO, Kim YS. 2007. Differentiation of aroma characteristics of pine-mushrooms (Tricholoma matsutake Sing.) of different grades using gas chromatography-olfactometry and sensory analysis. J Agric Food Chem 55: 2323-2328. https://doi.org/10.1021/jf062702z
  7. Cho IH, Kim SY, Choi HK, Kim YS. 2006. Characterization of aroma-active compounds in raw and cooked pine-mushrooms (Tricholoma matsutake Sing.). J Agric Food Chem 54: 6332-6335. https://doi.org/10.1021/jf060824l
  8. Ding X, Tang J, Cao M, Guo CX, Zhang X, Zhong J, Zhang J, Sun Q, Feng S, Yang ZR, Zhao J. 2010. Structure elucidation and antioxidant activity of a novel polysaccharide isolated from Tricholoma matsutake. Int J Biol Macromol 47: 271-275. https://doi.org/10.1016/j.ijbiomac.2010.04.010
  9. Mau JL, Lin HC, Song SF. 2002. Antioxidant properties of several specialty mushrooms. Food Res Int 35: 519-526. https://doi.org/10.1016/S0963-9969(01)00150-8
  10. Byeon SE, Lee J, Lee E, Lee SY, Hong EK, Kim YE, Cho JY. 2009. Functional activation of macrophages, monocytes and splenic lymphocytes by polysaccharide fraction from Tricholoma matsutake. Arch Pharm Res 32: 1565-1572. https://doi.org/10.1007/s12272-009-2108-y
  11. Hoshi H, Iijima H, Ishihara Y, Yasuhara T, Matsunaga K. 2008. Absorption and tissue distribution of an immunomodulatory alpha-D-glucan after oral administration of Tricholoma matsutake. J Agric Food Chem 56: 7715-7720. https://doi.org/10.1021/jf801123k
  12. Kim JY, Byeon SE, Lee YG, Lee JY, Park J, Hong EK, Cho JY. 2008. Immunostimulatory activities of polysaccharides from liquid culture of pine-mushroom Tricholoma matsutake. J Microbiol Biotechnol 18: 95-103.
  13. Ebina T, Kubota T, Ogamo N, Matsunaga K. 2002. Antitumor effect of a peptide-glucan preparation extracted from a mycelium of Tricholoma matsutake (S. Ito and Imai) Sing. Biotherapy 16: 255-259.
  14. Hong JY, Choi YJ, Kim MH, Shin SR. 2009. Study on the quality of apple dressing sauce added with pine mushroom (Tricholoma matsutake Sing) and chitosan. Korean J Food Preserv 16: 60-67.
  15. Choi SK. 2007. Quality characteristics of demi-glace sauce with pine mushroom and mushroom powder added. Korean J Culinary Res 13: 119-127.
  16. Park ML. 2008. A study on the characteristics of pine-tree mushroom (Tricholoma matsutake Sing.) pickle for the standard recipe. Korean J Culinary Res 14: 55-66.
  17. Kang MY, Kim SY, Yun HJ, Nam SH. 2004. Antioxidative activity of the extracts from browned oak mushroom (Lentinus edodes) with unmarketable quality. Korean J Food Sci Technol 36: 648-654.
  18. Myers RH. 1971. Response surface methodology. Allyn and Bacon Inc., Boston, MA, USA. p. 127-139.
  19. Wanasundara PKJPD, Shahidi F. 1996. Optimization of hexametaphosphate-assisted extraction of flaxseed proteins using response surface methodology. Korean J Food Sci 61: 604-607.
  20. SAS Institute, Inc. 1990. SAS user's guide. Statistical Analysis Systems Institute, Cary, NC, USA.
  21. Martha LA, James PB. 1992. The mathematica handbook, compatible with mathematica version 2.0. An inprint of academic press. Inc. Harcourt brace & Co., Massachusetts, USA. p 15-511.
  22. Amerine MA, Ough CS. 1980. Methods for analysis of musts and wine. Wiley & Sons, New York, USA. p 176-180.
  23. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  24. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. 1987. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric Biol Chem 51: 1333-1338. https://doi.org/10.1271/bbb1961.51.1333
  25. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426-428. https://doi.org/10.1021/ac60147a030
  26. Choi MA, Park NY, Woo SM, Jeong YJ, Shin SR. 2003. Characteristics of Hericium erinaceus and its extracts. Korean J Food Preserv 10: 560-564.
  27. Chung HS, Youn KS. 2005. Comparison of pretreatment methods for extraction of selected components from Ganoderma Lucidum. Korean J Food Preserv 12: 130-134.
  28. Lee WY, Choi SY, Lee BS, Park JS, Kim MJ, Oh SL. 2006. Optimization of extraction conditions from Omija (Schizandra chinensis Baillon) by response surface methodology. Korean J Food Preserv 13: 252-258.
  29. Lee BY, Hwang JB. 2000. Physicochemical characteristics of Agastache rugosa O. Kuntze extracts by extraction conditions. Korean J Food Sci Technol 32: 1-8.
  30. Kandaswami C, Middleton EJR. 1994. Free radical scavenging and antioxidant activity of plant flavonoids. In Free Radicals in Diagnostic Medicine. Armstrong D, ed. Plenum Press, New York and London. p 351-376.
  31. Lee GD, Chang HS, Kim HK. 1997. Antioxidative and nitrite-scavenging activities of edible mushrooms. Korean J Food Sci Technol 29: 432-436.
  32. Kim HK, Han HS, Lee GD, Kim KH. 2005. Physiological activities of fresh Pleurotus eryngii extracts. J Korean Soc Food Sci Nutr 34: 439-445. https://doi.org/10.3746/jkfn.2005.34.4.439
  33. Crosby NT, Sawyer R. 1976. N-nitrosamines: A review of chemical and biological properties and their estimation in foodstuffs. Adv Food Res 22: 1-71. https://doi.org/10.1016/S0065-2628(08)60336-5
  34. Lee SJ, Choi SY, Shin JH, Seo JK, Lim HC, Sung NJ. 2005. The electron donating ability, nitrite scavenging ability and NDMA formation effect of solvent extracts from Yuza (Citrus junos SIEB ex TANAKA). J Fd Hyg Safety 20:237-243.
  35. Im JA, Na YS, Baeg SH. 2004. Antioxidative activity and nitrite scavenging ability of ethanol extract from Phyllostachys bambusoides. Korean J Food Sci Technol 36:306-310.
  36. Choi SH, Kwon HC, An DJ, Park JL, Oh DH. 2003. Nitrite contents and storage properties of sausage added with green tea powder. Korean J Food Sci Ani Resour 23:299-308.

피인용 문헌

  1. Optimization of Extraction Conditions of Sarcodon aspratus by Response Surface Methodology vol.44, pp.3, 2015, https://doi.org/10.3746/jkfn.2015.44.3.464
  2. A Study on the Yield of Functional Components of Citrus Peel Extracts using Optimized Hot Water Extraction and Enzymatic Hydrolysis vol.28, pp.1, 2012, https://doi.org/10.9724/kfcs.2012.28.1.051
  3. Optimization of Extraction Conditions of Pleurotus cornucopiae by Response Surface Methodology vol.43, pp.10, 2014, https://doi.org/10.3746/jkfn.2014.43.10.1565
  4. Optimization of the Extraction of Bioactive Compounds from Chaga Mushroom (Inonotus obliquus) by the Response Surface Methodology vol.47, pp.2, 2015, https://doi.org/10.9721/KJFST.2015.47.2.233
  5. Food Functional Properties of Pleurotus eryngii Cultivated with Different Wavelength of LED Lights vol.19, pp.5, 2012, https://doi.org/10.11002/kjfp.2012.19.5.645