DOI QR코드

DOI QR Code

Metal-Semiconductor Contact Behavior of Solution-Processed ZnSnO Thin Film Transistors

용액법으로 제작된 ZnSnO 박막트랜지스터의 전극 물질에 따른 계면 접촉특성 연구

  • Jeong, Young-Min (Department of Materials Science and Engineering, Yonsei University) ;
  • Song, Keun-Kyu (Department of Materials Science and Engineering, Yonsei University) ;
  • Woo, Kyoo-Hee (Department of Materials Science and Engineering, Yonsei University) ;
  • Jun, Tae-Hwan (Department of Materials Science and Engineering, Yonsei University) ;
  • Jung, Yang-Ho (Department of Materials Science and Engineering, Yonsei University) ;
  • Moon, Joo-Ho (Department of Materials Science and Engineering, Yonsei University)
  • 정영민 (연세대학교 신소재공학과) ;
  • 송근규 (연세대학교 신소재공학과) ;
  • 우규희 (연세대학교 신소재공학과) ;
  • 전태환 (연세대학교 신소재공학과) ;
  • 정양호 (연세대학교 신소재공학과) ;
  • 문주호 (연세대학교 신소재공학과)
  • Received : 2010.06.25
  • Accepted : 2010.07.26
  • Published : 2010.08.27

Abstract

We studied the influence of different types of metal electrodes on the performance of solution-processed zinc tin oxide (ZTO) thin-film transistors. The ZTO thin-film was obtained by spin-coating the sol-gel solution made from zinc acetate and tin acetate dissolved in 2-methoxyethanol. Various metals, Al, Au, Ag and Cu, were used to make contacts with the solution-deposited ZTO layers by selective deposition through a metal shadow mask. Contact resistance between the metal electrode and the semiconductor was obtained by a transmission line method (TLM). The device based on an Al electrode exhibited superior performance as compared to those based on other metals. Kelvin probe force microscopy (KPFM) allowed us to measure the work function of the oxide semiconductor to understand the variation of the device performance as a function of the types metal electrode. The solution-processed ZTO contained nanopores that resulted from the burnout of the organic species during the annealing. This different surface structure associated with the solution-processed ZTO gave a rise to a different work function value as compared to the vacuum-deposited counterpart. More oxygen could be adsorbed on the nanoporous solution-processed ZTO with large accessible surface areas, which increased its work function. This observation explained why the solution-processed ZTO makes an ohmic contact with the Al electrode.

Keywords

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature. 432, 488 (2004). https://doi.org/10.1038/nature03090
  2. E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. PereiraM and R. Martins, Thin Solid Films. 487, 205 (2005). https://doi.org/10.1016/j.tsf.2005.01.066
  3. B. Ong, C. Li, Y. Li, Y Wu and R. Loutfy, J. Am. Chem. Soc., 129, 2750 (2007). https://doi.org/10.1021/ja068876e
  4. D. Lee, Y. Chang, G. Herman and C. Chang, Adv. Mater., 19, 843 (2007). https://doi.org/10.1002/adma.200600961
  5. Y. Chang, D. Lee, G. Herman, C. Chang: Electrochem Solid State Lett., 10, H135 (2007). https://doi.org/10.1149/1.2666588
  6. S. Jeong, Y. Jeong, J. Moon, J. Phys. Chem. C, 112, 30 (2008).
  7. C. Y. Koo, D. Kim, S. Jeong and J. Moon, J. Korean Phys. Soc., 53(1), 218 (2008). https://doi.org/10.3938/jkps.53.218
  8. D. Kim, C. Y. Koo, K. Song, Y. Jeong and J. Moon, Appl. Phys. Lett., 95, 103501 (2009). https://doi.org/10.1063/1.3225555
  9. A. Kudo, H. Yanagim, K. Ueda, H. Hosono, H. Kawazoe and Y. Yano, Appl. Phys. Lett., 75, 2851 (1991).
  10. H. K. Kim, S. H. Han, W. K. Choi and T. Y. Seong, Appl. Phys. Lett., 77, 1647 (2000). https://doi.org/10.1063/1.1308527
  11. H. K. Kim, S. H. Han, W. K. Choi and T. Y. Seong, J. Electrochem. Soc., 148, G114 (2001). https://doi.org/10.1149/1.1346617
  12. C. Kim, B. Lee, H. J. Yang, H. M. Lee, J. G. Lee and H. J. Shin, J. Kor. Phys. Soc., 47, S417 (2005).
  13. K. Woo, C. Bae, Y. Jeong, D. Kim and J. Moon, J. Mater. Chem., 20, 3877 (2010). https://doi.org/10.1039/c000162g
  14. D. R. Lide, CRC Handbook of Chemistry and Physics, 89th ed., p.12, CRC Press, FL, USA (2008).
  15. A. K. Chaddha, J. D. Parsons and G. B. Kruaval, Appl. Phys. Lett., 66(6), 760 (1995). https://doi.org/10.1063/1.114085
  16. Y. S. Park, S. W. Ryu, J. S. Yu, H. J. Kim, S. H. Kim and J. H. Kim, Kor. J. Mater. Res., 16(10), 629 (2006)(in Korean). https://doi.org/10.3740/MRSK.2006.16.10.629
  17. W. B. Jackson, G. S. Herman, R. L. Hoffman, C. Taussig, S. Braymen, F. Jeffery and J. Hauschildt, J. Non-Cryst. Solids., 352, 1753 (2006). https://doi.org/10.1016/j.jnoncrysol.2005.11.080
  18. W. B. Jackson, R. L. Hoffman and G. S. Herman, Appl. Phys. Lett., 87, 193503 (2005). https://doi.org/10.1063/1.2120895
  19. S. H. Kim, J. T. Maeng, C. J. Choi, J. H. Leem, M. S. Han and T. Y. Seong, Electrochem. Solid-State Lett., 8, G167 (2005). https://doi.org/10.1149/1.1922873
  20. Y. Park, V. Choong and Y. Gao, Appl. Phys. Lett., 68, 2699 (1996). https://doi.org/10.1063/1.116313
  21. D. Kang, H. Lim, C. Kim, I. Song, J. Park, Y. Park and J. Chung, Appl. Phys. Lett., 90, 192101 (2007). https://doi.org/10.1063/1.2723543
  22. Y. Jeong, K. Song, D. Kim, C. Y. Koo and J. Moon, J. Electrochem. Soc., 156, H808 (2009). https://doi.org/10.1149/1.3212847
  23. C. Bae, D. Kim, S. Moon, T. Choi, Y. Kim, B. S. Kim, J. S. Lee, H. Shin and J. Moon, ACS Appl. Mater. Interfaces, 2, 611 (2010). https://doi.org/10.1021/am900787k

Cited by

  1. Characterization of ZTO Thin Films Transistor Deposited by On-axis Sputtering and Facing Target Sputtering(FTS) vol.26, pp.12, 2016, https://doi.org/10.3740/MRSK.2016.26.12.676