References
- Kumar, V., Abbas, A.K., Fausto, N. Robbins and Cotran Pathologic Basis of Disease. San Diego, U.S.A., Elsevier Saunders. pp 1386-1388, 2004.
- 이광우. 신경과학. 서울, 범문사, pp 369-370, 2005.
- 대한정신의학회. 신경정신의학. 서울, 중앙문화사, pp. 507-509, 2007.
- Talesa, V.N. Acetylcholinesterase in Alzheimer's disease. Mech Ageing Dev. 122(16):1961-1969, 2001. https://doi.org/10.1016/S0047-6374(01)00309-8
- Kasa, P., Rakonczay, Z., Gulya, K. The cholinergic system in Alzheimer's disease. Prog Nuurobiol. 52(6):511-535, 1997. https://doi.org/10.1016/S0301-0082(97)00028-2
- Pakaski, M., Kalman, J. Interactions between the amyloid and cholinergic mechanisms in Alzheimer's disease. Neurochem Int. 53(5):103-111, 2008. https://doi.org/10.1016/j.neuint.2008.06.005
- 전국한의과대학 본초학공동교재 편저위원회. 본초학. 서울, 영림사, pp 345-346, 2007.
- 김영욱, 송태원, 오민석. 총명탕이 건망유도백서의 학습과 기 억에 미치는 영향. 한방재활의학과학회지 8(2):464-479, 1998.
- 오영진, 김보경. 총명탕과 향부자총명탕의 추출물, 나노분말 제형을 이용한 치매에 관한 연구. 동의신경정신과학회지 17(1):79-105, 2006.
- 이승희, 이상룡, 정인철. 귀비총명탕 열수추출물과 초미세분말제형이 Alzheimer's Disease 병태 모델에 미치는 영향. 동의생리병리학회지 21(4):921-933, 2007.
- 하수영, 이상룡, 정인철. 총명탕과 산사총명탕이 Alzheimer's Disease 병태 모델에 미치는 영향. 동의신경정신과학회지 17(1):59-78, 2006.
-
박지운, 이상룡, 정인철. 총명탕과 목근피총명탕이 CT105와
$\betaA$ 로 유도된 Alzheimer's disease 병태 모델에 미치는 영향. 동의신경정신과학회지 17(1):37-57, 2006. - 국윤재, 최 혁, 김태헌, 강형원, 유영수. 베타아밀로이드 유도성 Neuro 2A 세포독성에 대한 총명탕의 효과. 동의생리병리학회지 18(5):1418-1425, 2004.
- 김경윤, 이상영, 차대연, 이석진, 김계엽, 김행중, 정현우. 허혈성 뇌손상 백서에서 가감총명탕이 인지기능에 미치는 효과. 동의생리병리학회지 22(3):556-561, 2008.
- 안기영, 이성균, 이승희, 이재원, 신진봉, 송봉근, 이언정. 허혈유발 흰쥐에 있어서의 인지장애에 미치는 가감총명탕의 효과. 대한한의학회지 28(2):1-12, 2007.
- Morris, R.G. Development of a water maze procedure for studying spatial learning in the rat. J Neurosci Methods. 11(1):47-60, 1984. https://doi.org/10.1016/0165-0270(84)90007-4
- Olton, D.S., Papas, B.C. Spatial memory and hippocampal function. Neuropsychologia. 17(6):669-682, 1979. https://doi.org/10.1016/0028-3932(79)90042-3
- Oh, M.H., Houghton, P.J., Whang, W.K., Cho, J.H. Screening of Korean herbal medicines used to improve cognitive function for anti-cholinesterase activity. Phytomedicine. 11(6):544-548, 2004. https://doi.org/10.1016/j.phymed.2004.03.001
- Blokland, A. Scopolamine-induced deficits in cognitive performance: A review of animal studies. Scopolamine Rev. pp 1-76, 2005.
- Messer, W.S.Jr., Bohnett, M., Stibbe, J. Evidence for a preferential involvement of M1 muscarinic receptors in representational memory. Neurosci Lett. 116(1-2):184-189, 1990. https://doi.org/10.1016/0304-3940(90)90407-Z
- Anagnostaras, S.G., Murphy, G.G., Hamilton, S.E., Mitchell, S.L., Rahnama, N.P., Nathanson, N.M., Silva, A.J. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci. 6(1):51-58, 2003. https://doi.org/10.1038/nn992
- Seeger, T., Fedorova, I., Zheng. F., Miyakawa. T., Koustova. E., Gomeza. J., Basile. A.S., Alzheimer, C., Wess, J. M2 muscarinic acetylcholine receptor knock-out mice show deficits in behavioral flexibility, working memory, and hippocampal plasticity. J Neurosci. 24(45):10117-10127, 2004. https://doi.org/10.1523/JNEUROSCI.3581-04.2004
- Chen, W., An, W., Chu, J. Effect of water extract of Poria on cytosolic free calcium concentration in brain nerve cells of neonatal rats. Zhongguo Zhong Xi Yi Jie He Za Zhi. 18(5):293-295, 1998.
- Murray, K.D., Gall, C.M., Jones, E.G., Isackson, P.J. Differential regulation of brain-derived neurotrophic factor and type II calcium/calmodulin-dependent protein kinase messenger RNA expression in Alzheimer's disease. Neuroscience. 60(1):37-48, 1994. https://doi.org/10.1016/0306-4522(94)90202-X
- Alderson, R.F., Alterman, A.L., Barde, Y.A., Lindsay, R.M. Brain-derived neurotrophic factor increses survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron. 5(3):297-306, 1990. https://doi.org/10.1016/0896-6273(90)90166-D
- McAllister, A.K., Katz, L.C., Lo, D.C. Neurotrophins and synaptic plasticity. Annu Rev Neurosci. 22: 295-318, 1999. https://doi.org/10.1146/annurev.neuro.22.1.295
- Martin, K.C., Barad, M., Kandel, E.R. Local protein synthesis and its role in synapse-specific plasticity. Curr Opin Neurobiol. 10(5):587-592, 2000. https://doi.org/10.1016/S0959-4388(00)00128-8
- Kelleher III, R.J., Govindarajan, A., Tonegawa, S. Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron. 44(1):59-73, 2004. https://doi.org/10.1016/j.neuron.2004.09.013
- Bourtchouladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., Silva, A.J. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell. 79(1):59-68, 1994. https://doi.org/10.1016/0092-8674(94)90400-6
- Mizuno, M., Yamada, K., Maekawa, N., Saito, K., Seishima, M., Nabeshima, T. CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning. Behav Brain Res. 133(2):135-141, 2002. https://doi.org/10.1016/S0166-4328(01)00470-3
- West, A.E., Chen, W.G., Dalva, M.B., Dolmetsch, R.E., Kornhauser, J.M., Shaywitz, A.J., Takasu, M.A., Tao, X., Greenberg, M.E. Calcium regulation of neuronal gene expression. Proc Natl Acad Sci USA. 98(20):11024-11031, 2001. https://doi.org/10.1073/pnas.191352298