Proteome analysis between diverse phenotypes of Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium)

  • Shin, Gee-Wook (College of Veterinary Medicine, Chonbuk National University) ;
  • Cha, In-Seok (College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Woo-Won (Busan Metropolitan City Institute of Health and Environmental) ;
  • Nho, Seong-Won (College of Veterinary Medicine, Gyeongsang National University) ;
  • Park, Seong-Bin (College of Veterinary Medicine, Gyeongsang National University) ;
  • Jang, Ho-Bin (College of Veterinary Medicine, Gyeongsang National University) ;
  • Kim, Yong-Hwan (College of Veterinary Medicine, Gyeongsang National University) ;
  • Jung, Tae-Sung (College of Veterinary Medicine, Gyeongsang National University)
  • Accepted : 2010.11.01
  • Published : 2010.12.30

Abstract

Protein expression patterns in Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium) strains with diverse phenotypes, such as phage type, antibiotic resistance pattern and plasmid profiles were examined. For detailed analysis of proteins expressed by different S. Typhimurium strains, protein fractions were divided into detergent-rich phase (DP) and aqueous phase (AP) using triton X-114 detergent. The two phases were subjected to two-dimensional gel electrophoresis (2-DE), followed by protein identification using peptide mass fingerprinting (PMF). In the results, PMF showed that DP fractions consisted mainly of outer membrane proteins, whereas the AP fractions included cytosolic proteins. Comparison of 2-DE profiles of DP did not show any distinct protein spots which could be correlated with phage type, antibiotic resistance pattern or plasmid profile. However, comparisons of 2-DE profiles of the AP revealed differences in the protein spots, which could be correlated with the plasmid profile and phage types. Among these protein spots, flagellin was specific for strains containing a 90 kb plasmid. Compared to DT193 phage type, three protein spots in the range of pI 5.0-5.5 and MW 8-15 kDa of AP 2-DE profiles were absent in the DT104 phage types. Additionally, a protein spot with PI in the range of 4.5-5.0 and molecular weight (MW) between 51-69 kDa was specific for phage type DT104, while a protein spot with pI in the range of 4.0-4.8 and MW between 18-20 kDa was specific for DT193 phage type. These protein spots may be useful for discriminating phage types of S. Typhimurium.

Keywords

References

  1. Baucheron S, Mouline C, Praud K, Chaslus-Dancla E, Cloeckaert A. TolC but not AcrB is essential for multidrug-resistant Salmonella enterica serotype Typhimurium colonization of chicks. J Antimicrob Chemother 2005, 55, 707-712. https://doi.org/10.1093/jac/dki091
  2. Baucheron S, Tyler S, Boyd D, Mulvey MR, Chaslus-Dancla E, Cloeckaert A. AcrAB-TolC directs efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium DT104. Antimicrob Agents Chemother 2004, 48, 3729-3735. https://doi.org/10.1128/AAC.48.10.3729-3735.2004
  3. Benenson AS. Control of Communicable Diseases Manual. 16th ed. pp. 410-415, American Public Health Association, Washington DC, 1995.
  4. Bessa MC, Michael GB, Canu N, Canal CW, Cardoso M, Rabsch W, Rubino S. Phenotypic and genetic characterization of Salmonella enterica subsp. enterica serovar Typhimurium isolated from pigs in Rio Grande do Sul, Brazil. Res Vet Sci 2007, 83, 302-310. https://doi.org/10.1016/j.rvsc.2007.01.006
  5. Bodzon-Kulakowska A, Bierczynska-Krzysik A, Dylag T, Drabik A, Suder P, Noga M, Jarzebinska J, Silberring J. Methods for samples preparation in proteomic research. J Chromatogr B Analyt Technol Biomed Life Sci 2007, 849, 1-31. https://doi.org/10.1016/j.jchromb.2006.10.040
  6. Coldham NG, Randall LP, Piddock LJ, Woodward MJ. Effect of fluoroquinolone exposure on the proteome of Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 2006, 58, 1145-1153. https://doi.org/10.1093/jac/dkl413
  7. Cordwell SJ, Larsen MR, Cole RT, Walsh BJ. Comparative proteomics of Staphylococcus aureus and the response of methicillin-resistant and methicillinsensitive strains to Triton X-100. Microbiology 2002, 148, 2765-2781. https://doi.org/10.1099/00221287-148-9-2765
  8. Davies PR, Morrow WE, Jones FT, Deen J, Fedorka-Cray PJ, Harris IT. Prevalence of Salmonella in finishing swine raised in different production systems in North Carolina, USA. Epidemiol Infect 1997, 119, 237-244. https://doi.org/10.1017/S095026889700784X
  9. Doerrler WT, Raetz CR. Loss of outer membrane proteins without inhibition of lipid export in an Escherichia coli YaeT mutant. J Biol Chem 2005, 280, 27679-27687. https://doi.org/10.1074/jbc.M504796200
  10. Dupont M, James CE, Chevalier J, Pages JM. An early response to environmental stress involves regulation of OmpX and OmpF, two enterobacterial outer membrane pore-forming proteins. Antimicrob Agents Chemother 2007, 51, 3190-3198. https://doi.org/10.1128/AAC.01481-06
  11. Encheva V, Wait R, Begum S, Gharbia SE, Shah HN. Protein expression diversity amongst serovars of Salmonella enterica. Microbiology 2007, 153, 4183-4193. https://doi.org/10.1099/mic.0.2007/010140-0
  12. Encheva V, Wait R, Gharbia S, Begum S, Shah H. Proteome analysis of serovars Typhimurium and Pullorum of Salmonella enterica subspecies I. BMC Microbiol 2005, 5, 42. https://doi.org/10.1186/1471-2180-5-42
  13. Freudl R, Cole ST. Cloning and molecular characterization of the ompA gene from Salmonella typhimurium. Eur J Biochem 1983, 134, 497-502. https://doi.org/10.1111/j.1432-1033.1983.tb07594.x
  14. Friedrich MJ, Kinsey NE, Vila J, Kadner RJ. Nucleotide sequence of a 13.9 kb segment of the 90kb virulence plasmid of Salmonella typhimurium: the presence of fimbrial biosynthetic genes. Mol Microbiol 1993, 8, 543-558. https://doi.org/10.1111/j.1365-2958.1993.tb01599.x
  15. Hommais F, Krin E, Laurent-Winter C, Soutourina O, Malpertuy A, Le Caer JP, Danchin A, Bertin P. Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 2001, 40, 20-36. https://doi.org/10.1046/j.1365-2958.2001.02358.x
  16. Hu WS, Lin YH, Shih CC. A proteomic approach to study Salmonella enterica serovar Typhimurium putative transporter YjeH associated with ceftriaxone resistance. Biochem Biophys Res Commun 2007, 361, 694-699. https://doi.org/10.1016/j.bbrc.2007.07.090
  17. Jain S, Goldberg MB. Requirement for YaeT in the outer membrane assembly of autotransporter proteins. J Bacteriol 2007, 189, 5393-5398. https://doi.org/10.1128/JB.00228-07
  18. Jungblut PR, Zimny-Arndt U, Zeindl-Eberhart E, Stulik J, Koupilova K, Pleissner KP, Otto A, Muller EC, Sokolowska-Kohler W, Grabher G, Stoffler G. Proteomics in human disease: Cancer, heart and infectious diseases. Electrophoresis 1999, 20, 2100-2110. https://doi.org/10.1002/(SICI)1522-2683(19990701)20:10<2100::AID-ELPS2100>3.0.CO;2-D
  19. Landry F, Lombardo CR, Smith JW. A method for application of samples to matrix-associated laser desorption ionization time-of-flight targets that enhances peptide detection. Anal Biochem 2000, 279, 1-8. https://doi.org/10.1006/abio.1999.4468
  20. Lee RP, Doughty SW, Ashman K, Walker J. Purification of hydrophobic integral membrane proteins from Mycoplasma hyopneumoniae by reversed-phase high-performance liquid chromatography. J Chromatogr A 1996, 737, 273-279. https://doi.org/10.1016/0021-9673(96)00005-2
  21. Lee WW, Jung BY, Lee GR, Lee DS, Kim YH. Serotype and antimicrobial susceptibility of Salmonella spp. isolated from pigs and cattle. Korean J Vet Serv 2009, 32, 49-59.
  22. Lee WW, Jung BY, Lee GR, Lee DS, Kim YH. Molecular genetic characterization of multiple antimicrobial resistant Salmonella spp. isolated from pigs and cattle. Korean J Vet Serv 2009, 32, 61-76.
  23. Lin J, Huang S, Zhang Q. Outer membrane proteins: key players for bacterial adaptation in host niches. Microbes Infect 2002, 4, 325-331. https://doi.org/10.1016/S1286-4579(02)01545-9
  24. Maguire HC, Codd AA, Mackay VE, Rowe B, Mitchell E. A large outbreak of human salmonellosis traced to a local pig farm. Epidemiol Infect 1993, 110, 239-246. https://doi.org/10.1017/S0950268800068151
  25. Merlin C, Gardiner G, Durand S, Masters M. The Escherichia coli metD locus encodes an ABC transporter which includes Abc (MetN), YaeE (MetI), and YaeC (MetQ). J Bacteriol 2002, 184, 5513-5517. https://doi.org/10.1128/JB.184.19.5513-5517.2002
  26. Metzer E, Agmon V, Andoren N, Cohen D. Emergence of multidrug-resistant Salmonella enterica serotype Typhimurium phage-type DT104 among salmonellae causing enteritis in Israel. Epidemiol Infect 1998, 121, 555-559. https://doi.org/10.1017/S0950268898001526
  27. Molla B, Berhanu A, Muckle A, Cole L, Wilkie E, Kleer J, Hildebrandt G. Multidrug resistance and distribution of Salmonella serovars in slaughtered pigs. J Vet Med B Infect Dis Vet Public Health 2006, 53, 28-33. https://doi.org/10.1111/j.1439-0450.2006.00900.x
  28. Molloy MP, Herbert BR, Slade MB, Rabilloud T, Nouwens AS, Williams KL, Gooley AA. Proteomic analysis of the Escherichia coli outer membrane. Eur J Biochem 2000, 267, 2871-2881. https://doi.org/10.1046/j.1432-1327.2000.01296.x
  29. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 2003, 67, 593-656. https://doi.org/10.1128/MMBR.67.4.593-656.2003
  30. Nishino K, Yamaguchi A. Role of histone-like protein H-NS in multidrug resistance of Escherichia coli. J Bacteriol 2004, 186, 1423-1429. https://doi.org/10.1128/JB.186.5.1423-1429.2004
  31. O'Connor CD, Farris M, Fowler R, Qi SY. The proteome of Salmonella enterica serovar Typhimurium: current progress on its determination and some applications. Electrophoresis 1997, 18, 1483-1490. https://doi.org/10.1002/elps.1150180823
  32. Park MR, Lee EG, Kim YH, Jung TS, Shin YS, Shin GW, Cha HG, Kim GS. Reference map of soluble proteins from Salmonella enterica serovar Enteritidis by two-dimensional electrophoresis. J Vet Sci 2003, 4, 143-149.
  33. Pontello M, Sodano L, Nastasi A, Mammina C, Astuti M, Domenichini M, Belluzzi G, Soccini E, Silvestri MG, Gatti M, Gerosa E, Montagna A. A community-based outbreak of Salmonella enterica serotype Typhimurium associated with salami consumption in Northern Italy. Epidemiol Infect 1998, 120, 209-214. https://doi.org/10.1017/S095026889800870X
  34. Poole K. Efflux-mediated multiresistance in Gramnegative bacteria. Clin Microbiol Infect 2004, 10, 12-26.
  35. Qi SY, Moir A, O'Connor CD. Proteome of Salmonella typhimurium SL1344: identification of novel abundant cell envelope proteins and assignment to a twodimensional reference map. J Bacteriol 1996, 178, 5032-5038. https://doi.org/10.1128/jb.178.16.5032-5038.1996
  36. Randall LP, Cooles SW, Coldham NG, Penuela EG, Mott AC, Woodward MJ, Piddock LJ, Webber MA. Commonly used farm disinfectants can select for mutant Salmonella enterica serovar Typhimurium with decreased susceptibility to biocides and antibiotics without compromising virulence. J Antimicrob Chemother 2007, 60, 1273-1280. https://doi.org/10.1093/jac/dkm359
  37. Ribot EM, Wierzba RK, Angulo FJ, Barrett TJ. Salmonella enterica serotype Typhimurium DT104 isolated from humans, United States, 1985, 1990, and 1995. Emerg Infect Dis 2002, 8, 387-391. https://doi.org/10.3201/eid0804.010202
  38. Santiviago CA, Fuentes JA, Bueno SM, Trombert AN, Hildago AA, Socias LT, Youderian P, Mora GC. The Salmonella enterica sv. Typhimurium smvA, yddG and ompD (porin) genes are required for the efficient efflux of methyl viologen. Mol Microbiol 2002, 46, 687-698. https://doi.org/10.1046/j.1365-2958.2002.03204.x
  39. Shin GW, Palaksha KJ, Yang HH, Shin YS, Kim YR, Lee EY, Oh MJ, Jung TS. Partial two-dimensional gel electrophoresis (2-DE) maps of Streptococcus iniae ATCC29178 and Lactococcus garvieae KG9408. Dis Aquat Organ 2006, 70, 71-79. https://doi.org/10.3354/dao070071
  40. Snijder HJ, Dijkstra BW. Bacterial phospholipase A: structure and function of an integral membrane phospholipase. Biochim Biophys Acta 2000, 1488, 91-101. https://doi.org/10.1016/S1388-1981(00)00113-X
  41. Stoorvogel J, van Bussel MJ, Tommassen J, van de Klundert JA. Molecular characterization of an Enterobacter cloacae outer membrane protein (OmpX). J Bacteriol 1991, 173, 156-160. https://doi.org/10.1128/jb.173.1.156-160.1991
  42. Swanenburg M, Urlings HA, Snijders JM, Keuzenkamp DA, van Knapen F. Salmonella in slaughter pigs: prevalence, serotypes and critical control points during slaughter in two slaughterhouses. Int J Food Microbiol 2001, 70, 243-254. https://doi.org/10.1016/S0168-1605(01)00545-1
  43. Threlfall EJ, Frost JA, Ward LR, Rowe B. Epidemic in cattle and humans of Salmonella typhimurium DT 104 with chromosomally integrated multiple drug resistance. Vet Rec 1994, 134, 577. https://doi.org/10.1136/vr.134.22.577
  44. Vandahl BB, Birkelund S, Christiansen G. Genome and proteome analysis of Chlamydia. Proteomics 2004, 4, 2831-2842. https://doi.org/10.1002/pmic.200400940
  45. Vogt J, Schulz GE. The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence. Structure 1999, 7, 1301-1309. https://doi.org/10.1016/S0969-2126(00)80063-5
  46. Wang Y, Qu L, Uthe JJ, Bearson SM, Kuhar D, Lunney JK, Couture OP, Nettleton D, Dekkers JC, Tuggle CK. Global transcriptional response of porcine mesenteric lymph nodes to Salmonella enterica serovar Typhimurium. Genomics 2007, 90, 72-84. https://doi.org/10.1016/j.ygeno.2007.03.018
  47. Xu C, Lin X, Ren H, Zhang Y, Wang S, Peng X. Analysis of outer membrane proteome of Escherichia coli related to resistance to ampicillin and tetracycline. Proteomics 2006, 6, 462-473. https://doi.org/10.1002/pmic.200500219