DOI QR코드

DOI QR Code

Effects of Graphenes/CNTs Co-reinforcement on Electrical and Mechanical Properties of HDPE Matrix Nanocomposites

  • Kim, Byung-Joo (Nano Material Research Dept., Jeonju Institute of Machinery and Carbon Composites) ;
  • Byun, Joon-Hyung (Composite Materials Lab, Korea Institute of Machinery & Materials) ;
  • Park, Soo-Jin (Dept. of Chemistry, Inha Univ.)
  • Received : 2010.01.26
  • Accepted : 2010.06.18
  • Published : 2010.08.20

Abstract

In this work, mechanical and electrical properties of graphenes (GP)/carbon nanotubes (CNTs) co-reinforced high density polyethylene (HDPE) matrix composites were studied. The microstructure, morphologies, and electric properties of the composites were evaluated by XRD, TEM, and 4-probe methods, respectively. It was found that the electric resistivity of 0.5 wt %-GP/HDPE was immeasurable, and 2.0 wt %-CNTs/HDPE showed high resistivity ($6.02{\times}10^4{\Omega}{\cdot}cm$). Meanwhile, GP (0.5 wt %)/CNTs (2.0 wt %)/HDPE showed excellent low resistivity ($3.1{\times}10^2{\Omega}{\cdot}cm$). This result indicates that the co-reinforcement systems can dramatically decrease electric resistivity of the carbon/polymer nanocomposites.

Keywords

References

  1. Dhawan, S. K.; Singh, N.; Venkatachalam, S. Synth. Met. 2001, 125, 389. https://doi.org/10.1016/S0379-6779(01)00478-7
  2. Zhao, X.; Hirigaki, K.; Tabata, I.; Okubayashi, S.; Hori, T. Surf. Coat. Technol. 2006, 201, 628. https://doi.org/10.1016/j.surfcoat.2005.12.021
  3. Schwartz, M. M. Composite Materials Handbook, 2nd ed.; Mc-Graw-Hill: New York, 1992.
  4. Donnet, J. B.; Bansal, R. C. Carbon Fibers, 2nd ed.; Marcel Dekker: New York, 1990.
  5. Fitzer, E. Carbon Fibers and Their Composites; Springer-Verlag: New York, 1992.
  6. Seo, M. K.; Park, S. J. Chem. Phys. Lett. 2004, 395, 44. https://doi.org/10.1016/j.cplett.2004.07.047
  7. Kim, B. J.; Park, S. J. J. Colloid Interface Sci. 2007, 315, 791. https://doi.org/10.1016/j.jcis.2007.07.013
  8. Kim, H. M.; Kim, K.; Lee, C. Y.; Joo, J. Nanoscale Sci. Design 2004, 84, 589.
  9. Yan, J.; Fan, Z.; Wei, T.; Qie, Z.; Wang, S.; Zhang, M. Mat. Sci. Eng. B 2008, 151, 174. https://doi.org/10.1016/j.mseb.2008.05.018
  10. Zhang, L.; Zhu, H.; Song, Y.; Zhang, Y.; Huang, Y. Mat. Sci. Eng. B 2008, 153, 78. https://doi.org/10.1016/j.mseb.2008.10.029
  11. Mountrichas, G.; Pispas, S.; Tagmatarchis, N. Mat. Sci. Eng. B 2008, 152, 40. https://doi.org/10.1016/j.mseb.2008.06.006
  12. Jou, W. S.; Cheng, H. Z.; Hsu, C. F. J. Alloys Compounds 2007, 434, 641. https://doi.org/10.1016/j.jallcom.2006.08.203
  13. Lee, J. H.; Kim, S. K.; Kim, N. H. Scripta Materialia 2006, 55, 1119. https://doi.org/10.1016/j.scriptamat.2006.08.051
  14. Lei, Y.; Wu, Q.; Clemons, C. M.; Yao, F.; Xu, Y. J. Applied Polym. Sci. 2007, 106, 3958. https://doi.org/10.1002/app.27048
  15. Lu, W.; Wu, D. J.; Wll, C. L.; Chen, G. H. J. Mater. Sci. 2006, 41, 1785. https://doi.org/10.1007/s10853-006-3946-3

Cited by

  1. Preparation and Characterization of Reduced Graphene Nanosheets via Pre-exfoliation of Graphite Flakes vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.209
  2. Reinforcement effect and synergy of carbon nanofillers with different dimensions in high density polyethylene based nanocomposites vol.108, pp.4, 2017, https://doi.org/10.3139/146.111482
  3. Exfoliated graphite nanoplatelets/poly(arylene ether nitrile) nanocomposites vol.29, pp.10, 2017, https://doi.org/10.1177/0954008316671182
  4. Effects of synthesis pressure conditions on the preparation of graphene-like carbonaceous materials from organic liquid precursors by a solvothermal method vol.23, pp.None, 2010, https://doi.org/10.5714/cl.2017.23.074
  5. The Effect Of Extrusion Machine Againt Consistency Filaments Products 3D Printing vol.1569, pp.None, 2010, https://doi.org/10.1088/1742-6596/1569/4/042011