DOI QR코드

DOI QR Code

A Study on Electrical and Thermal Properties of Polyimide/MWNT Nanocomposites

  • Park, Soo-Jin (Dept. of Chemistry, Inha University) ;
  • Chae, Sung-Won (Dept. of Polymer.Nano Science and Technology, Chonbuk National University) ;
  • Rhee, John-Moon (Dept. of Polymer.Nano Science and Technology, Chonbuk National University) ;
  • Kang, Shin-Jae (Division of Mechanical Design Engineering, Chonbuk National University)
  • Received : 2009.06.11
  • Accepted : 2010.06.22
  • Published : 2010.08.20

Abstract

In this work, the electrical and thermal properties of polyimide/multi-walled carbon nanotube (MWNT) nanocomposites were investigated. The polyimide/MWNT nanocomposites contained from 0 to 2.0 wt % of MWNT. The electrical properties of the polyimide films were characterized by a specific resistance measurement. The thermal properties were evaluated using thermogravimetric analysis (TGA) and a differential scanning calorimeter (DSC). It was found that the thermal properties of the polyimide nanocomposites increased with increasing MWNT content and specific resistance as well. This result indicated that the crosslinking of polyimide/MWNT nanocomposites was enhanced by good distribution of the MWNT in the polyimide resins, resulting in the increase of the electrical and thermal properties of the nanocomposites.

Keywords

References

  1. Ajayan, P. M.; Ebbesen, T. W.; Ichihashi, T.; Iijima, S.; Tanigaki, K.; Hiura, H. Nature 1993, 362, 522. https://doi.org/10.1038/362522a0
  2. Breuer, O.; Sundararaj, U. Polym. Compos. 2004, 25, 630. https://doi.org/10.1002/pc.20058
  3. Jiang, X.; Bin, Y.; Matsuo, M. Polymer 2005, 46, 7418. https://doi.org/10.1016/j.polymer.2005.05.127
  4. Imai, Y.; Fueki, T.; Inoue, T.; Kakimoto, M. J. Polym. Sci. Technol. 1998, 61, 1899.
  5. Popov, V. N. Mater. Sci. Eng. 2004, 43, 61. https://doi.org/10.1016/j.mser.2003.10.001
  6. Potschke, P.; Fornes, T. D.; Paul, D. R. Polymer 2002, 43, 3247. https://doi.org/10.1016/S0032-3861(02)00151-9
  7. Zhu, B. K.; Xie, S. H.; Xu, Z. K.; Xu, Y. Y. Compos. Sci. Technol. 2006, 66, 551.
  8. Cadek, M.; Coleman, J. N.; Barron, V.; Hedicke, K.; Blau, W. J. Appl. Phys. Lett. 2002, 81, 5123. https://doi.org/10.1063/1.1533118
  9. Bin, Y.; Kitanaka, M.; Zhu, D.; Matsuo, M. Macromolcules 2003, 36, 6213. https://doi.org/10.1021/ma0301956
  10. Yuen, S. M.; Ma, C. M.; Lin, Y. Y.; Kuan, H. C. Compos. Sci. Technol. 2007, 67, 2566.
  11. Oumaies, Z.; Park, C.; Wise, K. E.; Siochi, E. J.; Harrison, J. S. Compos. Sci. Technol. 2003, 63, 1637. https://doi.org/10.1016/S0266-3538(03)00067-8
  12. Park, C.; Ounaies, Z.; Watson, K. A.; Crooks, R. E.; Smith, J. E.; Lowther, S. E. Chem. Phys. Lett. 2002, 364, 304.
  13. Qu, L.; Lin, Y.; Hill, D. E.; Zhou, B.; Wang, W.; Sun, X. Macromolecules 2004, 37, 6056.
  14. Zhu, B. K.; Xie, S. H.; Xu, Z. K.; Xu, Y. Y. Compos. Sci. Technol. 2006, 66, 549.
  15. Yu, A.; Hu, H.; Bekyarova, E.; Itkis, M. E.; Gao, J.; Zhao, B. Compos. Sci. Technol. 2006, 66, 1188.
  16. Delozier, D. M.; Watson, K. A.; Smith, J. G.; Connell, J. W. Compos. Sci. Technol. 2005, 65, 753.
  17. Park, S. J.; Seo, M. K. Chem. Phys. Lett. 2004, 395, 44. https://doi.org/10.1016/j.cplett.2004.07.047
  18. Endo, M.; Takeucho, K.; Hiraoka, T.; Furuta, T.; Kasai, T.; Sun, X. J. Phys. Chem. Solid 1997, 58, 1709.
  19. Park, S. J.; Lee, E. J.; Lee, J. R.; Won, H. Y.; Moon, D. K. Polymer (Korea) 2007, 31, 120.

Cited by

  1. Synthesis and Properties of Novel Y-type Nonlinear Optical Polyester Containing Dioxynitroazobenzene Group with Enhanced Thermal Stability of Dipole Alignment vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3361
  2. Synthesis and Properties of Novel Polyurethane Containing Nitrophenylazocatecholic Group as NLO Chromophore vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.695
  3. Synthesis and Nonlinear Optical Properties of Novel Y-type Polyimide Containing Dioxynitroazobenzene Group vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1321
  4. Preparation and properties of the polyimide thin films reinforced by acylchloride-functionalized multiple-walled carbon nanotubes vol.47, pp.24, 2013, https://doi.org/10.1177/0021998312461822
  5. Synthesis of Poly Imide/α’ω’-di Poly Acrylamide (3-Mercaptopropyl) Trimethoxysilane Terminated Copolymer vol.26, pp.9, 2016, https://doi.org/10.3740/MRSK.2016.26.9.478
  6. Thermal and Optical Properties of Polyimide Films with Dispersed SWCNTs for Laser Applications pp.03701972, 2017, https://doi.org/10.1002/pssb.201700283
  7. Effects of carbon nanotubes on polymer physics vol.50, pp.9, 2012, https://doi.org/10.1002/polb.23052
  8. Preparation and electrical properties of polyimide/carbon nanotubes composites vol.35, pp.4, 2018, https://doi.org/10.1515/msp-2017-0096
  9. Synthesis and Nonlinear Optical Properties of Novel Polyester with Enhanced Second Harmonic Generation Thermal Stability vol.31, pp.12, 2010, https://doi.org/10.5012/bkcs.2010.31.12.3866
  10. Synthesis and Properties of Novel T-type Nonlinear Optical Polyurethane Containing Tricyanovinylthienyl Group with Enhanced Thermal Stability of Dipole Alignment vol.32, pp.2, 2011, https://doi.org/10.5012/bkcs.2011.32.2.424
  11. Ductile Polyimide/Reduced Graphene Oxide Nanohybrid Films with Porous Structure Fabricated by a Green Hydrogel Strategy vol.1, pp.4, 2010, https://doi.org/10.1021/acsapm.9b00234
  12. Facile Solution for Recycling Hazardous Flexible Plastic-Laminated Metal Packaging Waste To Produce Value-Added Metal Alloys vol.9, pp.50, 2010, https://doi.org/10.1021/acssuschemeng.1c04368