DOI QR코드

DOI QR Code

An Expeditious Oxidative Aromatization of Hantzsch 1,4-Dihydropyridines to Pyridines Using Cetyltrimethylammonium Peroxodisulfate: A Phase Transferring Oxidant

  • Kumar, Parvin (Chemistry Department, Guru Nanak Khalsa College) ;
  • Kumar, Ashwani (Drug discovery and research laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology)
  • Received : 2010.05.22
  • Accepted : 2010.06.26
  • Published : 2010.08.20

Abstract

A new approach to the use of potassium peroxodisulphate as an oxidizing reagent is proposed and applied to the case of oxidative aromatization of 1, 4-dihydropyridines with cetyltrimethylammonium peroxodisulfate, a phase transfer oxidant. We demonstrate how it is possible to increase the reactivity of potassium peroxodisulphate in the presence of phase transfer catalyst. Dealkylation in case of 4-n-alkyl/n-alkenyl was not obtained.

Keywords

References

  1. Boger, D. L.; Nakahara, S. J. Org. Chem. 1991, 56, 880. https://doi.org/10.1021/jo00002a077
  2. Boger, D. L.; Kasper, A. M. J. Am. Chem. Soc. 1989, 111, 1517. https://doi.org/10.1021/ja00186a067
  3. Zhang, T. Y.; Stout, J. R.; Keay, J. G.; Scriven, E. F. V.; Toomey, J. E.; Goe, G. L. Tetrahedron 1995, 51, 13177. https://doi.org/10.1016/0040-4020(95)00788-A
  4. Ma, X.; Gang, D. R. Nat. Prod. Rep. 2004, 21, 752. https://doi.org/10.1039/b409720n
  5. Fletcher, M. D.; Hurst, T. E.; Miles, T. J.; Moody, C. J. Tetrahedron 2006, 62, 5454. https://doi.org/10.1016/j.tet.2006.03.051
  6. Evdokimov, N. M.; Magedov, I. V.; Kireev, A. S.; Kornienko, A. Org. Lett. 2006, 8, 899. https://doi.org/10.1021/ol052994+
  7. Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 4592. https://doi.org/10.1021/ja060626a
  8. Winter, A.; Risch, N. Synthesis 2003, 2667.
  9. Thomas, A. D.; Asokan, C. V. Tetrahedron Lett. 2002, 43, 2273. https://doi.org/10.1016/S0040-4039(02)00174-0
  10. Tanaka, K.; Mori, H.; Yamamoto, M.; Katsumara, S. J. Org. Chem. 2001, 66, 3099. https://doi.org/10.1021/jo005779+
  11. Mashraqui, S. H.; Karnik, M. A. Tetrahedron Lett. 1998, 39, 4895. https://doi.org/10.1016/S0040-4039(98)00889-2
  12. Singh, K.; Singh, J.; Singh, H. Tetrahedron 1998, 54, 935. https://doi.org/10.1016/S0040-4020(97)10349-0
  13. Renslo, A. R.; Danheiser, R. L. J. Org. Chem. 1998, 63, 7840. https://doi.org/10.1021/jo981014e
  14. Vijn, R. J.; Arts, H. J.; Green, R.; Castelijns, A. M. Synthesis 1994, 573.
  15. Ahmed, S.; Baruah, R. C. Tetrahedron Lett. 1996, 37, 8231. https://doi.org/10.1016/0040-4039(96)01909-0
  16. Komatsu, M.; Ohgishi, H.; Takamatsu, S.; Ohshiro, Y.; Agawa, T. Angew. Chem., Int. Ed. Engl. 1982, 21, 213. https://doi.org/10.1002/anie.198202131
  17. Van Aken, K. J.; Lux, G. M.; Deroover, G. G.; Meerpoel, L.; Hoornaert, G. J. Tetrahedron 1994, 50, 5211. https://doi.org/10.1016/S0040-4020(01)90431-4
  18. Anabha, E. R.; Nirmala, K. N.; Thomas, A.; Asokan, C. V. Synthesis 2007, 428.
  19. Shan, R.; Howlett, S. E.; Knaus, E. E. J. Med. Chem. 2002, 45, 955. https://doi.org/10.1021/jm010394k
  20. Perez-Reyes, E.; Schneider, T. Drug Dev. Res. 1994, 33, 295. https://doi.org/10.1002/ddr.430330311
  21. Triggle, D. J. Chirality 1996, 8, 35 https://doi.org/10.1002/(SICI)1520-636X(1996)8:1<35::AID-CHIR8>3.0.CO;2-F
  22. Flaim, S. F.; Zelis, R. Fed. Proc. 1981, 40, 2877.
  23. Brewster,M. E.; Simay, A.; Czako, K.; Winwood, D.; Fatag, H.; Bodor, N. J. Org. Chem. 1989, 54, 3721. https://doi.org/10.1021/jo00276a039
  24. Friedols, F.; Knox, R. J. Biochem.Pharmacol. 1992, 44, 631. https://doi.org/10.1016/0006-2952(92)90396-Z
  25. Janis, R. A.; Triggle, D. J. J. Med. Chem. 1983, 25, 775.
  26. Mason, R. P.; Mak, I. T.; Trumbore, M. W.; Mason, P. E. Am. J. Cardiol. 1999, 84, 16.
  27. Peri, R.; Padmanabhan, S.; Rutledge, A.; Singh, S.; Triggle, Da. J. J. Med. Chem. 2000, 43, 2906. https://doi.org/10.1021/jm000028l
  28. Khadikar, B.; Borkat, S. Synth. Commun. 1998, 207.
  29. Mao, Y. Z.; Jin, M. Z.; Liu, Z. L.; Wu, L. M. Org. Lett. 2000, 2, 741. https://doi.org/10.1021/ol990367c
  30. Zolfigol, M. A.; Zebarjadian, M. H.; Sadeghi, M. M.; Mohammadpoor- Baltork, I.; Memarian, H. R.; Shamsipur, M. Synth. Commun. 2001, 31, 929. https://doi.org/10.1081/SCC-100103329
  31. Memarian, H. R.; Sadeghi, M. M.; Aliyan, H. Indian J. Chem. 1998, 37B, 219.
  32. Sabitha, G.; Reddy, G. S. K.; Reddy, Ch. S.; Fatima, N.; Yadav, J. S. Synthesis 2003, 1267.
  33. Wang, B.; Hu, Y.; Hu, H. Synth. Commun. 1999, 29, 4193. https://doi.org/10.1080/00397919908085893
  34. Sadeghi, M. M.; Mohammadpoor-Baltork, I.; Memarian, H. R.; Sobhani, S. Synth. Commun. 2000, 30, 1661. https://doi.org/10.1080/00397910008087204
  35. Guengerich, F. P.; Bocker, R. H. J. Biol. Chem. 1998, 263, 8168.
  36. Pragst, F.; Kaltofen, B.; Volke, J.; Kuthan, J. J. Electroanal. Chem. 1981, 119, 301. https://doi.org/10.1016/S0022-0728(81)80062-9
  37. Anniyappam, M.; Muralidharan, D.; Perumal, P. T. Tetrahedron 2002, 58, 5069. https://doi.org/10.1016/S0040-4020(02)00461-1
  38. Varma, R. S.; Kumar, D. Tetrahedron Lett. 1999, 40, 21. https://doi.org/10.1016/S0040-4039(98)80007-5
  39. Litvic, M. F.; Litvic, M.; Vinkovic, V. Tetrahedron 2008, 64, 10912 https://doi.org/10.1016/j.tet.2008.08.103
  40. Esfahani, M. N.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. Bio. Med. Chem. Lett. 2005, 15, 3276. https://doi.org/10.1016/j.bmcl.2005.04.044
  41. Sharma, S. D.; Hazarika, P.; Konwar, D. Catal. Commun. 2008, 9, 709. https://doi.org/10.1016/j.catcom.2007.08.008
  42. Adibia, H.; Hajipour, A. R. Bio. Med. Chem. Lett. 2007, 17, 1008. https://doi.org/10.1016/j.bmcl.2006.11.033
  43. Moghadam, M.; Nasr-Esfahani, M.; Tangestaninejad, S.; Mirkhani, V. Bio. Med. Chem. Lett. 2006, 16, 2026. https://doi.org/10.1016/j.bmcl.2005.12.072
  44. Filipan-Litvic, M.; Litvic, M.; Vinkovic, V. Tetrahedron 2008, 64, 5649. https://doi.org/10.1016/j.tet.2008.04.040
  45. Heravi, M. M.; Behbahani, F. K.; Oskooie, H. A.; Shoar, R. H. Tetrahedron Lett. 2005, 46, 2775. https://doi.org/10.1016/j.tetlet.2005.02.147
  46. Heravi, M. M.; Derikvand, F.; Hassan-Pour, S.; Bakhtiari, K.; Bamoharram, F. F.; Oskooie, H. A. Bio. Med. Chem. Lett. 2007, 17, 3305. https://doi.org/10.1016/j.bmcl.2007.04.002
  47. Eynde, J. J. V.; Mayence, A.; Maquestiau, A. Tetrahedron 1992,48, 463. https://doi.org/10.1016/S0040-4020(01)89008-6
  48. Khalilzadeh, M. A.; Hosseini, A.; Sadeghifar, H.; Valipour, P. Acta Chim. Slov. 2007, 54, 900.
  49. Zeynizadeh, B.; Dilmaghani, K. A.; Roozijoy, A. J. Chinese Chem. Soc. 2005, 52, 1001. https://doi.org/10.1002/jccs.200500139
  50. Zolfigol, M. A.; Shirini, F.; Choghamarania, A. G.; Baltorkc, I. M. Green Chemistry 2002, 4, 562. https://doi.org/10.1039/b208328k
  51. Zeynizadeh, B.; Dilmaghani, K. A.; Roozijoy, A. Synth. Commun. 2005, 35, 557. https://doi.org/10.1081/SCC-200049787
  52. Zolfigol, M. A.; Salehi, P.; Choghamarani, A. G.; Safaiee, M.; Shahamirian, M. Synth. Commun. 2007, 37, 1817. https://doi.org/10.1080/00397910701316276
  53. Bagley, M. C.; Lubinu, M. C. Synthesis 2006, 1283
  54. Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Baishya, G.; Narsaiah, A. V. Synthesis 2006, 451
  55. Varma, R. S.; Kumar, D. J. Chem. Soc., Perkin Trans. 1 1999, 1755
  56. Lee, K. H.; Ko, K. Y. Bull. Korean Chem. Soc. 2002, 23(11), 1505 https://doi.org/10.5012/bkcs.2002.23.11.1505
  57. Cheng, D. P.; Chen, Z. C. Synth. Commun. 2002, 32(5), 793. https://doi.org/10.1081/SCC-120002521
  58. Kumar, P. Chinese J. Chemistry 2009, 27, 1487. https://doi.org/10.1002/cjoc.200990250
  59. Kumar, P. J. Heterocyclic Chem. MS No JHET-10-0019, In Press.
  60. House, D. A. Chem. Rev. 1962, 62, 185. https://doi.org/10.1021/cr60217a001
  61. Moschel, R. C.; Behrman, E. J. J. Org. Chem. 1974, 39, 1983. https://doi.org/10.1021/jo00928a001
  62. Clerici, A.; Porta, O. J. Chem. Soc. Perkin Trans. 2 1980, 1234.
  63. Fristad, W. E.; Peterson, J. R. Tetrahedron Lett. 1983, 24, 4547. https://doi.org/10.1016/S0040-4039(00)85951-1
  64. Nikishin, G. I.; Troyansky, E. I.; Lazareva, M. I. Tetrahedron Lett. 1984, 25, 4987. https://doi.org/10.1016/S0040-4039(01)91277-8
  65. Itahara, T.; Fujii, Y.; Tada, M. J. Org. Chem. 1988, 53, 3421 https://doi.org/10.1021/jo00250a003
  66. Yamasaki, S. Chem. Lett. 1992, 323.
  67. Memarian, H. R.; Farhadi, A. J. Iran. Chem. Soc. 2009, 6(3), 638-646 https://doi.org/10.1007/BF03246543
  68. Yang, S. G.; Hwang, J. P.; Park, M. Y.; Lee, K.; Kim, Y. H. Tetrahedron 2007, 63, 5184. https://doi.org/10.1016/j.tet.2007.03.167
  69. Gratzel, C. K.; Jirousek, M.; Gratzel, M. Colloids Surf. 1985, 13, 221. https://doi.org/10.1016/0166-6622(85)80018-4
  70. Gratzel, C. K.; Jirousek, M.; Gratzel, M. J. Phys. Chem. 1984, 88, 1055. https://doi.org/10.1021/j150650a003
  71. Norouzi, M.; Tajbakhsh, M.; Alinezhad, H.; Urimi, A. G. J. Chin. Chem. Soc. 2008, 55, 508. https://doi.org/10.1002/jccs.200800074
  72. Urimi, A. G.; Alinezhad, H.; Tajbakhsh, M. Acta Chim. Slov. 2008, 55, 481.
  73. Memarian, H. R.; Mohammadpoor-Baltork, I.; Sadeghi, M. M.; Samani, Z. S. Indian J. Chem. 2001, 40B, 727.

Cited by

  1. An environmentally benign and solvent-free synthesis of 3-aryl[1,2,4]triazolo[4,3-a]pyridines and 1-aryl-5-methyl[1,2,4]triazolo[4,3-a]quinolines using phenyliodine bis(trifluoroacetate) or iodobenzene diacetate vol.47, pp.10, 2012, https://doi.org/10.1007/s10593-012-0899-0
  2. Solvent-Free One Pot Synthesis of 2-aryl/Heteroarylbenzothiazoles Using Hypervalent Iodine (III) Reagents vol.49, pp.5, 2012, https://doi.org/10.1002/jhet.962
  3. ]-[1,2,4]-triazoles pp.0022152X, 2013, https://doi.org/10.1002/jhet.1600
  4. In Situ Generated Cetyltrimethylammonium Bisulphate in Choline Chloride–Urea Deep Eutectic Solvent: A Novel Catalytic System for One Pot Synthesis of 1,3,4-Oxadiazole vol.144, pp.8, 2014, https://doi.org/10.1007/s10562-014-1288-3
  5. Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants vol.22, pp.8, 2015, https://doi.org/10.1007/s11356-014-3631-z
  6. ChemInform Abstract: An Expeditious Oxidative Aromatization of Hantzsch 1,4‐Dihydropyridines to Pyridines Using Cetyltrimethylammonium Peroxodisulfate: A Phase Transferring Oxidant. vol.41, pp.52, 2010, https://doi.org/10.1002/chin.201052151
  7. Iodobenzene diacetate (IBD) catalyzed an quick oxidative aromatization of Hantzsch-1,4-dihydropyridines to pyridines under ultrasonic irradiation vol.19, pp.4, 2010, https://doi.org/10.1016/j.ultsonch.2011.12.021
  8. Silica-supported ceric ammonium nitrate (CAN): a simple, mild and solid-supported reagent for quickest oxidative aromatization of Hantzsch 1,4-dihydropyridines vol.73, pp.5, 2010, https://doi.org/10.1007/s11696-018-0666-5
  9. Shedding Blue Light on the Undergraduate Laboratory: An Easy-to-Assemble LED Photoreactor for Aromatization of a 1,4-Dihydropyridine vol.96, pp.9, 2010, https://doi.org/10.1021/acs.jchemed.8b01026
  10. A Serendipitous Synthesis: SiO2‐HNO3Mediated Oxidative Aromatization and Regioselective Nitration of 1,3,5‐Trisubstituted‐4,5‐Dihydro‐1H vol.4, pp.35, 2019, https://doi.org/10.1002/slct.201902285
  11. Synthesis and Laccase-Mediated Oxidation of New Condensed 1,4-Dihydropyridine Derivatives vol.11, pp.6, 2010, https://doi.org/10.3390/catal11060727